scholarly journals Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation (Preprint)

2019 ◽  
Author(s):  
Syed Hasib Akhter Faruqui ◽  
Adel Alaeddini ◽  
Mike C Chang ◽  
Sara Shirinkam ◽  
Carlos Jaramillo ◽  
...  

BACKGROUND It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study their interaction and identify the path toward the development of MCC. However, the current graphical models representing MCC are often complex and difficult to analyze. Therefore, it is necessary to develop improved methods for generating these models. OBJECTIVE This study aimed to summarize the complex graphical models of MCC interactions to improve comprehension and aid analysis. METHODS We examined the emergence of 5 chronic medical conditions (ie, traumatic brain injury [TBI], posttraumatic stress disorder [PTSD], depression [Depr], substance abuse [SuAb], and back pain [BaPa]) over 5 years among 257,633 veteran patients. We developed 3 algorithms that utilize the second eigenvalue of the graph Laplacian to summarize the complex graphical models of MCC by removing less significant edges. The first algorithm learns a sparse probabilistic graphical model of MCC interactions directly from the data. The second algorithm summarizes an existing probabilistic graphical model of MCC interactions when a supporting data set is available. The third algorithm, which is a variation of the second algorithm, summarizes the existing graphical model of MCC interactions with no supporting data. Finally, we examined the coappearance of the 100 most common terms in the literature of MCC to validate the performance of the proposed model. RESULTS The proposed summarization algorithms demonstrate considerable performance in extracting major connections among MCC without reducing the predictive accuracy of the resulting graphical models. For the model learned directly from the data, the area under the curve (AUC) performance for predicting TBI, PTSD, BaPa, SuAb, and Depr, respectively, during the next 4 years is as follows—year 2: 79.91%, 84.04%, 78.83%, 82.50%, and 81.47%; year 3: 76.23%, 80.61%, 73.51%, 79.84%, and 77.13%; year 4: 72.38%, 78.22%, 72.96%, 77.92%, and 72.65%; and year 5: 69.51%, 76.15%, 73.04%, 76.72%, and 69.99%, respectively. This demonstrates an overall 12.07% increase in the cumulative sum of AUC in comparison with the classic multilevel temporal Bayesian network. CONCLUSIONS Using graph summarization can improve the interpretability and the predictive power of the complex graphical models of MCC.

10.2196/16372 ◽  
2019 ◽  
Author(s):  
Syed-Hasib-Akhter Faruqui ◽  
Adel Alaeddini ◽  
Chi-Wen Chang ◽  
Sara Shirinkam ◽  
Carlos Jaramillo ◽  
...  

2017 ◽  
Author(s):  
Yunan Zhu ◽  
Ivor Cribben

AbstractSparse graphical models are frequently used to explore both static and dynamic functional brain networks from neuroimaging data. However, the practical performance of the models has not been studied in detail for brain networks. In this work, we have two objectives. First, we compare several sparse graphical model estimation procedures and several selection criteria under various experimental settings, such as different dimensions, sample sizes, types of data, and sparsity levels of the true model structures. We discuss in detail the superiority and deficiency of each combination. Second, in the same simulation study, we show the impact of autocorrelation and whitening on the estimation of functional brain networks. We apply the methods to a resting-state functional magnetic resonance imaging (fMRI) data set. Our results show that the best sparse graphical model, in terms of detection of true connections and having few false-positive connections, is the smoothly clipped absolute deviation (SCAD) estimating method in combination with the Bayesian information criterion (BIC) and cross-validation (CV) selection method. In addition, the presence of autocorrelation in the data adversely affects the estimation of networks but can be helped by using the CV selection method. These results question the validity of a number of fMRI studies where inferior graphical model techniques have been used to estimate brain networks.


Author(s):  
Marco F. Ramoni ◽  
Paola Sebastiani

Born at the intersection of artificial intelligence, statistics, and probability, Bayesian networks (Pearl, 1988) are a representation formalism at the cutting edge of knowledge discovery and data mining (Heckerman, 1997). Bayesian networks belong to a more general class of models called probabilistic graphical models (Whittaker, 1990; Lauritzen, 1996) that arise from the combination of graph theory and probability theory, and their success rests on their ability to handle complex probabilistic models by decomposing them into smaller, amenable components. A probabilistic graphical model is defined by a graph, where nodes represent stochastic variables and arcs represent dependencies among such variables. These arcs are annotated by probability distribution shaping the interaction between the linked variables. A probabilistic graphical model is called a Bayesian network, when the graph connecting its variables is a directed acyclic graph (DAG). This graph represents conditional independence assumptions that are used to factorize the joint probability distribution of the network variables, thus making the process of learning from a large database amenable to computations. A Bayesian network induced from data can be used to investigate distant relationships between variables, as well as making prediction and explanation, by computing the conditional probability distribution of one variable, given the values of some others.


Author(s):  
Marco F. Ramoni ◽  
Paola Sebastiani

Born at the intersection of artificial intelligence, statistics, and probability, Bayesian networks (Pearl, 1988) are a representation formalism at the cutting edge of knowledge discovery and data mining (Heckerman, 1997). Bayesian networks belong to a more general class of models called probabilistic graphical models (Whittaker, 1990; Lauritzen, 1996) that arise from the combination of graph theory and probability theory, and their success rests on their ability to handle complex probabilistic models by decomposing them into smaller, amenable components. A probabilistic graphical model is defined by a graph, where nodes represent stochastic variables and arcs represent dependencies among such variables. These arcs are annotated by probability distribution shaping the interaction between the linked variables. A probabilistic graphical model is called a Bayesian network, when the graph connecting its variables is a directed acyclic graph (DAG). This graph represents conditional independence assumptions that are used to factorize the joint probability distribution of the network variables, thus making the process of learning from a large database amenable to computations. A Bayesian network induced from data can be used to investigate distant relationships between variables, as well as making prediction and explanation, by computing the conditional probability distribution of one variable, given the values of some others.


Author(s):  
Marco F. Ramoni ◽  
Paola Sebastiani

Born at the intersection of artificial intelligence, statistics, and probability, Bayesian networks (Pearl, 1988) are a representation formalism at the cutting edge of knowledge discovery and data mining (Heckerman, 1997). Bayesian networks belong to a more general class of models called probabilistic graphical models (Whittaker, 1990; Lauritzen, 1996) that arise from the combination of graph theory and probability theory, and their success rests on their ability to handle complex probabilistic models by decomposing them into smaller, amenable components. A probabilistic graphical model is defined by a graph, where nodes represent stochastic variables and arcs represent dependencies among such variables. These arcs are annotated by probability distribution shaping the interaction between the linked variables. A probabilistic graphical model is called a Bayesian network, when the graph connecting its variables is a directed acyclic graph (DAG). This graph represents conditional independence assumptions that are used to factorize the joint probability distribution of the network variables, thus making the process of learning from a large database amenable to computations. A Bayesian network induced from data can be used to investigate distant relationships between variables, as well as making prediction and explanation, by computing the conditional probability distribution of one variable, given the values of some others.


2017 ◽  
Vol 42 (2) ◽  
Author(s):  
Vilda Purutçuoğlu ◽  
Ezgi Ayyıldız ◽  
Ernst Wit

AbstractIntroduction:The Gaussian Graphical Model (GGM) is one of the well-known probabilistic models which is based on the conditional independency of nodes in the biological system. Here, we compare the estimates of the GGM parameters by the graphical lasso (glasso) method and the threshold gradient descent (TGD) algorithm.Methods:We evaluate the performance of both techniques via certain measures such as specificity, F-measure and AUC (area under the curve). The analyses are conducted by Monte Carlo runs under different dimensional systems.Results:The results indicate that the TGD algorithm is more accurate than the glasso method in all selected criteria, whereas, it is more computationally demanding than this method too.Discussion and conclusion:Therefore, in high dimensional systems, we recommend glasso for its computational efficiency in spite of its loss in accuracy and we believe than the computational cost of the TGD algorithm can be improved by suggesting alternative steps in inference of the network.


2013 ◽  
Author(s):  
Donna M. Zulman ◽  
Emily Jenchura ◽  
Danielle Cohen ◽  
Eleanor Lewis ◽  
Steven M. Asch

Sign in / Sign up

Export Citation Format

Share Document