A Temporal Pattern Discovery Method and its Application to Physiological Data: A Case Study (Preprint)
BACKGROUND High frequency data collected from monitors and sensors that provide measures relating to patients’ vital status in intensive care units (NICUs) has the potential to provide valuable insights which can be crucial when making critical decisions for the care of premature and ill term infants. However, this exercise is not trivial when faced with huge volumes of data that are captured every second at the bedside/home. The ability to collect, analyze and understand any hidden relationships in the data that may be vital for clinical decision making is a central challenge. OBJECTIVE The main goal of this research is to develop a method to detect and represent relationships that may exist in temporal abstractions (TA) and temporal patterns (TP) derived from time oriented data. The premise of this research is that in clinical care, the discovery of unknown relationships among physiological time oriented data can lead to detection of onset of conditions, aid in classifying abnormal or normal behaviors or derive patterns of an altered trajectory towards a problematic future state for a patient. That is, there is great potential to use this approach to uncover previously unknown pathophysiologies that are present in high speed physiological data. METHODS This research introduces a TPR process and an associated TPRMine algorithm which adopts a stepwise approach to temporal pattern discovery by first applying a scaled mathematical formulation of the time series data. This is achieved by modelling the problem space as a finite state machine representation where for a given timeframe, a time series data segment transitions from one state to another based on probabilistic weights and then quantifying the many paths a time series data may transition to. RESULTS The TPRMine Algorithm has been designed, implemented and applied to patient physiological data streams captured from the McMaster Children’s Hospital NICU. The algorithm has been applied to understand the number of states a patient in a NICU bed can transition to in a given time period and a demonstration of formulation of hypothesis tests. In addition, a quantification of these states is completed leading to creation of a vital scoring. With this, it’s possible to understand the percent of time a patient remains in a high or low vital score. CONCLUSIONS The developed method allows understanding the number of states a patient may transition to in any given time period. Adding some clinical context to the identified states facilitates state quantification allowing formulation of thresholds which leads to generating patient scores. This is an approach that can be utilized for identifying patient at risk of some clinical condition prior to disease progress. Additionally the developed method facilitates identification of frequent patterns that could be associated with generated thresholds.