Diagnostic Model of in-Hospital Mortality in Patients with Acute ST-Segment Elevation Myocardial Infarction Used Artificial Intelligence Methods : Algorithm Development and Validation (Preprint)

2021 ◽  
Author(s):  
Yong Li

BACKGROUND Preventing in-hospital mortality in Patients with ST-segment elevation myocardial infarction (STEMI) is a crucial step. OBJECTIVE The objective of our research was to to develop and externally validate the diagnostic model of in-hospital mortality in acute STEMI patients used artificial intelligence methods. METHODS As our datasets were highly imbalanced, we evaluated the effect of down-sampling methods. Therefore, down-sampling techniques was additionally implemented on the original dataset to create 1 balanced datasets. This ultimately yielded 2 datasets; original, and down-sampling. We divide non-randomly the American population into a training set and a test set , and anther American population as the validation set. We used artificial intelligence methods to develop and externally validate the diagnostic model of in-hospital mortality in acute STEMI patients, including logistic regression, decision tree, extreme gradient boosting (XGBoost), K nearest neighbor classification model ,and multi-layer perceptron.We used confusion matrix combined with the area under the receiver operating characteristic curve (AUC) to evaluate the pros and cons of the above models. RESULTS The strongest predictors of in-hospital mortality were age, female, cardiogenic shock, atrial fibrillation(AF), ventricular fibrillation(VF),in-hospital bleeding and medical history such as hypertension, old myocardial infarction.The F2 score of logistic regression in the training set, the test set , and the validation data set were 0.7, 0.7, and 0.54 respectively.The F2 score of XGBoost were 0.74, 0.52, and 0.54 respectively. The F2 score of decision tree were 0.72, 0.51,and 0.52 respectively. The F2 score of K nearest neighbor classification model were 0.64,0.47, and 0.49 respectively. The F2 score of multi-layer perceptron were 0.71, 0.54, and 0.54 respectively. The AUC of logistic regression in the training set, the test set, and the validation data set were 0.72, 0.73, and 0.76 respectively. The AUC of XGoBost were 0.75, 0.73, and 0.75 respectively. The AUC of decision tree were 0.75, 0.71,and 0.74 respectively. The AUC of K nearest neighbor classification model were 0.71,0.69, and 0.72 respectively. The AUC of multi-layer perceptron were 0.73, 0.74, and 0.75 respectively. The diagnostic model built by logistic regression was the best. CONCLUSIONS The strongest predictors of in-hospital mortality were age, female, cardiogenic shock, AF, VF,in-hospital bleeding and medical history such as hypertension, old myocardial infarction. We had used artificial intelligence methods developed and externally validated the diagnostic model of in-hospital mortality in acute STEMI patients.The diagnostic model built by logistic regression was the best. CLINICALTRIAL We registered this study with WHO International Clinical Trials Registry Platform (ICTRP) (registration number: ChiCTR1900027129; registered date: 1 November 2019). http://www.chictr.org.cn/edit.aspx?pid=44888&htm=4.

Author(s):  
Lin Qiu ◽  
Yanpeng Qu ◽  
Changjing Shang ◽  
Longzhi Yang ◽  
Fei Chao ◽  
...  

2013 ◽  
Vol 3 ◽  
pp. 462-469 ◽  
Author(s):  
Martijn D. Steenwijk ◽  
Petra J.W. Pouwels ◽  
Marita Daams ◽  
Jan Willem van Dalen ◽  
Matthan W.A. Caan ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 1-12
Author(s):  
Agus Wahyu Widodo ◽  
Deo Hernando ◽  
Wayan Firdaus Mahmudy

Due to the problems with uncontrolled changes in mangrove forests, a forest function management and supervision is required. The form of mangrove forest management carried out in this study is to measure the area of mangrove forests by observing the forests using drones or crewless aircraft. Drones are used to take photos because they can capture vast mangrove forests with high resolution. The drone was flown over above the mangrove forest and took several photos. The method used in this study is extracting color features using mean values, standard deviations, and skewness in the HSV color space and texture feature extraction with Haralick features. The classification method used is the k-nearest neighbor method. This study conducted three tests, namely testing the accuracy of the system, testing the distance method used in the k-nearest neighbor classification method, and testing the k value. Based on the results of the three tests above, three conclusions obtained. The first conclusion is that the classification system produces an accuracy of 84%. The second conclusion is that the distance method used in the k-nearest neighbor classification method influences the accuracy of the system. The distance method that produces the highest accuracy is the Euclidean distance method with an accuracy of 84%. The third conclusion is that the k value used in the k-nearest neighbor classification method influences the accuracy of the system. The k-value that produces the highest accuracy is k = 3, with an accuracy of 84%.


Sign in / Sign up

Export Citation Format

Share Document