scholarly journals Representative System and Security Message Transmission using Re-encryption Scheme Based on Symmetric-key Cryptography

2017 ◽  
Vol 25 (0) ◽  
pp. 67-74 ◽  
Author(s):  
Dai Watanabe ◽  
Hisao Sakazaki ◽  
Kunihiko Miyazaki
Author(s):  
ABDUL RAZZAQUE ◽  
NILESHSINGH V. THAKUR

Image compression scheme proposed by researchers have no consideration of security. Similarly image encryption scheme proposed by the authors have no consideration of image size. In this paper a simultaneous image compression and encryption scheme is discussed. The order of the two processes viz. compression and encryption is EC i.e. image encryption is performed first then the image compression is applied. For image encryption a symmetric key cryptography multiplicative cipher is used. Similarly for compression Discrete Cosine Transform is used. Image Compression is concerned with minimizing the number of bit required to represent an image. The compression can be lossless or lossy. Image Encryption is hiding image from unauthorized access with the help of secret key that key can be private or public.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Mervat Mikhail ◽  
Yasmine Abouelseoud ◽  
Galal ElKobrosy

This paper blends the ideas from recent researches into a simple, yet efficient image encryption scheme for colored images. It is based on the finite field cosine transform (FFCT) and symmetric-key cryptography. The FFCT is used to scramble the image yielding an image with a uniform histogram. The FFCT has been chosen as it works with integers modulo p and hence avoids numerical inaccuracies inherent to other transforms. Fractals are used as a source of randomness to generate a one-time-pad keystream to be employed in enciphering step. The fractal images are scanned in zigzag manner to ensure decorrelation of adjacent pixels values in order to guarantee a strong key. The performance of the proposed algorithm is evaluated using standard statistical analysis techniques. Moreover, sensitivity analysis techniques such as resistance to differential attacks measures, mean square error, and one bit change in system key have been investigated. Furthermore, security of the proposed scheme against classical cryptographic attacks has been analyzed. The obtained results show great potential of the proposed scheme and competitiveness with other schemes in literature. Additionally, the algorithm lends itself to parallel processing adding to its computational efficiency.


2019 ◽  
Author(s):  
Ira Nath ◽  
Renesha Ghosh ◽  
Sourav Ghosh ◽  
Pranati Rakshit ◽  
Dharmpal Singh

2019 ◽  
Author(s):  
Ira Nath ◽  
Pranati Rakshit ◽  
Renesha Ghosh ◽  
Sourav Ghosh ◽  
Dharmpal Singh

2021 ◽  
Vol 11 (11) ◽  
pp. 4776
Author(s):  
Kyungbae Jang ◽  
Gyeongju Song ◽  
Hyunjun Kim ◽  
Hyeokdong Kwon ◽  
Hyunji Kim ◽  
...  

Grover search algorithm is the most representative quantum attack method that threatens the security of symmetric key cryptography. If the Grover search algorithm is applied to symmetric key cryptography, the security level of target symmetric key cryptography can be lowered from n-bit to n2-bit. When applying Grover’s search algorithm to the block cipher that is the target of potential quantum attacks, the target block cipher must be implemented as quantum circuits. Starting with the AES block cipher, a number of works have been conducted to optimize and implement target block ciphers into quantum circuits. Recently, many studies have been published to implement lightweight block ciphers as quantum circuits. In this paper, we present optimal quantum circuit designs of symmetric key cryptography, including PRESENT and GIFT block ciphers. The proposed method optimized PRESENT and GIFT block ciphers by minimizing qubits, quantum gates, and circuit depth. We compare proposed PRESENT and GIFT quantum circuits with other results of lightweight block cipher implementations in quantum circuits. Finally, quantum resources of PRESENT and GIFT block ciphers required for the oracle of the Grover search algorithm were estimated.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 685
Author(s):  
Raylin Tso

With the developments of mobile communications, M-commerce has become increasingly popular in recent years. However, most M-commerce schemes ignore user anonymity during online transactions. As a result, user transactions may easily be traced by shops, banks or by Internet Service Providers (ISPs). To deal with this problem, we introduce a new anonymous mobile payment scheme in this paper. Our new scheme has the following features: (1) Password-based authentication: authentication of users is done by low-entropy password; (2) Convenience: the new scheme is designed based on near field communication (NFC)-enabled devices and is compatible with EuroPay, MasterCard and Visa (EMV-compatible); (3) Efficiency: users do not need to have their own public/private key pairs and confidentiality is achieved via symmetric-key cryptography; (4) Anonymity: users use virtual accounts in the online shopping processes, thereby preventing attackers from obtaining user information even if the transaction is eavesdropped; (5) Untraceablity: no one (even the bank, Trusted Service Manager (TSM), or the shop) can trace a transaction and link the real identity with the buyer of a transaction; (6) Confidentiality and authenticity: all the transaction is either encrypted or signed by the sender so our new scheme can provide confidentiality and authenticity. We also present the performance and the security comparison of our scheme with other schemes. The results show that our scheme is applicable and has the most remarkable features among the existing schemes.


Sign in / Sign up

Export Citation Format

Share Document