A Novel Approach for Classifying Transient Phenomena in Power Transformers

Author(s):  
El Sayed M. Tag Eldin

The role of a power transformer protective relay is to rapidly operate the tripping during internal faults and block the tripping during magnetizing inrush. This paper presents a new approach for classifying transient phenomena in power transformer, which may be implemented in digital relaying for transformer differential protection. Discrimination between internal faults, external faults with current transformer saturation and magnetizing inrush currents is achieved by combining wavelet transforms and fuzzy logic. The wavelet transform is applied for the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals in both time and frequency domain. Fuzzy logic is used because of the uncertainty in the differential current signals and relay settings. MATLAB power system toolbox is used to generate current signals at both sides of a power transformer in a typical system with various conditions. The simulation results obtained show that the new algorithm provides a high operating sensitivity for internal faults and remains stable for external faults and inrush currents.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1009 ◽  
Author(s):  
Rahman Azis Prasojo ◽  
Harry Gumilang ◽  
Suwarno ◽  
Nur Ulfa Maulidevi ◽  
Bambang Anggoro Soedjarno

In determining the severity of power transformer faults, several approaches have been previously proposed; however, most published studies do not accommodate gas level, gas rate, and Dissolved Gas Analysis (DGA) interpretation in a single approach. To increase the reliability of the faults’ severity assessment of power transformers, a novel approach in the form of fuzzy logic has been proposed as a new solution to determine faults’ severity using the combination of gas level, gas rate, and DGA interpretation from the Duval Pentagon Method (DPM). A four-level typical concentration and rate were established based on the local population. To simplify the assessment of hundreds of power transformer data, a Support Vector Machine (SVM)-based DPM with high agreements to the graphical DPM has been developed. The proposed approach has been implemented to 448 power transformers and further implementation was done to evaluate faults’ severity of power transformers from historical DGA data. This new approach yields in high agreement with the previous methods, but with better sensitivity due to the incorporation of gas level, gas rate, and DGA interpretation results in one approach.


2014 ◽  
Vol 5 (2) ◽  
pp. 91-103 ◽  
Author(s):  
E. Ahmed ◽  
R. El-Sehiemy

This paper integrates a Real Power Differential Scheme (RPDS) for power transformer protection. The suggested RPDS for power transformer computes the active power loci during normal operation, switching, normal, and internal, involves turn to turn, and external faults at varied load angles. The proposed RPDS concept is based on monitoring and comparing the transformers primary and secondary active and reactive powers. The dynamic response of the proposed RPDS is tested 300 MVA, 220/66 kV, Y/Δ transformer. Furthermore, the suggested scheme is simulated with the use of Matlab/Simulink then tested for various fault and switching conditions. Moreover, the RPDS is checked for inter turn fault conditions at primary and secondary sides. The evaluation of the suggested scheme confirms the superiority of the proposed scheme to distinguish internal and external faults as well as magnetizing inrush currents with good selectivity, high speed, sensitivity, stability limits and high accuracy response of the power differential scheme. Finally, the suggested scheme is able to detect correctly the turn to turn faults for wide range of fault resistances but fails at very low values.


Author(s):  
Bharath Kumar Sugumar ◽  
Sujatha Balaraman

Faults in power systems are classified as internal and external faults. Faults within the zone are termed as internal faults whereas; the faults outside the Zone are called as external faults. Ideally, a relay outward after the protection of a zone should operate only for internal faults. It should restrain from operating for external faults or through faults. In this project, the busbar protection using differential protection scheme has been investigated for internal and external faults. The current magnitude from the Current Transformer is compared with a preset value and when the current exceeds the preset value, and then a trip command is given to associated circuit breaker. In this work, an algorithm has been developed to improve the selectivity of the relay and the same is tested on three-phase bus bar having two incoming lines and three outgoing lines at different fault levels and the results are verified for internal and external faults. The entire algorithm is programmed and graphical views of relay performance are verified using the MP LAB platform.


Author(s):  
U. Mohan Rao ◽  
D.Vijay Kumar

Power transformers are to be monitored frequently to avoid catastrophic failures which are more or less related to internal faults for which many techniques and tools are developed, somehow many of these techniques rely on experts analysis and are well effected by environmental conditions which leads to misdiagnosing of the unit. In this paper a new fuzzy logic algorithm (FLA) based technique is developed which gives the vulnerability status of internal faults by considering thermal, electrical and mechanical conditions prevailing in the transformer and integrating them. This system takes a set of test results of dissolved gas analysis, break down voltage, and sweep frequency response analysis so that aliasing effects and misdiagnosing can be reduced at a glance. It also facilitates to give current prevailing condition of Paper thermal, Oil thermal, Partial discharge, Electrical arching, oil break down voltage, and mechanical deformations related with core and windings individually so that corresponding remedies can be taken by the technologists. This system consists of 10 fuzzy logic controllers and is connected by considering technical conditions and reasons, the rule bases of these controllers were developed by considering various standards and experience of TIFAC CORE in NIT-Hamirpur. This fuzzy logic based system is tested and found that it is highly precise in classifying the critical statues of any transformer, reducing misdiagnosing and aliasing effects and identifying the current prevailing conditions.


Sign in / Sign up

Export Citation Format

Share Document