scholarly journals Development of Advanced Resistance Spot Welding Process Using Control of Electrode Force and Welding Current during Welding

2010 ◽  
Vol 28 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Rinsei IKEDA ◽  
Yasuaki OKITA ◽  
Moriaki ONO ◽  
Koichi YASUDA ◽  
Toshio TERASAKI
2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2012 ◽  
Vol 28 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Rinsei Ikeda ◽  
Yasuaki Okita ◽  
Moriaki Ono ◽  
Koichi Yasuda ◽  
Toshio Terasaki

2011 ◽  
Vol 214 ◽  
pp. 113-117 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was mild steel sheet metal. The experiments with full factorial design. The factors used in this study are welding current, welding time and electrode force. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that both of welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear and nugget size are the most welding current 10,000 amp., welding time 10 cycle and electrode force 1 kN. were tensile shear 7.13 kN. and nugget size maximum 6.75 mm. This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2021 ◽  
Vol 11 (3) ◽  
pp. 181-185
Author(s):  
Amit Hazari ◽  
Rith Saha ◽  
Bidisha Ghosh ◽  
Debraj Sengupta ◽  
Sayan Sarkar ◽  
...  

The spot welding procedure is used in a variety of industrial applications. The most critical elements influencing welding quality, productivity, and cost are the spot welding parameters. This research examines the effect of welding factors such as welding current and welding time on the strength of various welding joint designs. Resistance spot welding (RSW) is used in the automotive industry for manufacturing. This research focused on the optimization of process parameters for resistance spot welding (RSW), as well as the tensile testing and spot weld diameter. The goals of this analysis are to comprehend the physics of the process and to demonstrate the effect of electrical current, weld time, and material type on the resistance spot welding process.


2004 ◽  
Vol 126 (3) ◽  
pp. 605-610 ◽  
Author(s):  
C. T. Ji, ◽  
Y. Zhou,

Dynamic electrode displacement and force were characterized during resistance spot welding of aluminum alloy 5182 sheets using a medium-frequency direct-current welder. It was found that both electrode displacement and force increased rapidly at the beginning of the welding stage and then at a reducing rate. Rates of increase in electrode displacement and force were both proportional to welding current. And both electrode displacement and force experienced a sudden drop when weld metal expulsion occurred. However, the rate of increase in electrode displacement did not reach zero during welding even for joints with sufficient nugget diameter, while electrode force peaked when a large nugget diameter was produced. Possible strategies for process monitoring and control were also discussed.


Author(s):  
Wei Li ◽  
Daniel Cerjanec

This paper presents a comparative study of the AC and MFDC resistance spot welding process. Two identical welders were used; one with a single phase AC and the other with a median frequency DC weld control. Both welders were instrumented such that the primary and secondary voltage and current could be collected. A nugget growth experiment was conducted to compare the weld size and energy consumption in the AC and MFDC welding processes. It is found that the MFDC process generally produces larger welds with the same welding current. However, this difference is more prominent when the welding current is low. Overall the AC welding process consumes more energy to make a same size weld. The larger the welding current is used, the less efficient the AC process becomes.


2018 ◽  
Vol 115 (6) ◽  
pp. 610 ◽  
Author(s):  
Mehdi Safari ◽  
Hossein Mostaan ◽  
Abdoreza Ghaderi

In this work, dissimilar resistance spot welding of austenitic stainless steel sheet (304 grade) and ferritic stainless steel sheet (409 grade) is studied experimentally. For this purpose, the effects of process parameters such as welding current, welding time and electrode force on tensile-shear strength of resistance spot welded joints are investigated with response surface methodology (RSM). Also, microstructural evolutions during resistance spot welding process of AISI 409 and AISI 304 stainless steels are evaluated by optical microscopy. It is concluded from results that the tensile-shear strength of spot welds is increased with increasing the welding current, welding time and electrode force. It is shown that widmanstatten ferrites have been grown in the weld metal of dissimilar resistance spot welds of AISI 304 and AISI 409 stainless steels.


2013 ◽  
Vol 860-863 ◽  
pp. 780-783
Author(s):  
Qiao Bo Feng ◽  
Yun Feng Zhu ◽  
He Xin Zhao

The process parameters and quality of resistance spot welding for DP980 dual phase steel were studied through the orthogonal experiment method, and the influence of welding current, welding time and electrode force on the strength of welding joint has been discussed. The results show that the welding current has the greatest influence on the quality of welding joint for DP980 dual phase steel, and it needs relatively lower welding current for the DP980 dual phase steel as it has high resistivity, and appropriate increasing of electrode force is a feasible way to avoid the defect of shrinkage and it improves the joint strength.


2011 ◽  
Vol 52-54 ◽  
pp. 2176-2180
Author(s):  
Prachya Peasura

This research was to effect of electrode force on the tensile shear and nugget size of the resistance spot welding. The specimen was austenitic stainless steel 304 grade sheet metal 1.2 mm thickness. The electrode force are 1, 1.5, 2.0, 2.5, and 3.0 kN apply to the specimen. The replications in each treatment are 20 follow JIS Z 3136:1999 and JIS Z 3139:1978. Factor control, welding current 7 kA., time current flow 7 cycle and electrode tip diameter 6 mm. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999, macro structure testing according to JIS Z 3139: 1978 and analysis results by using One-way ANOVA .The result showed that electrode force had affected on tensile shear and nugget size at 95% confidential (P value > 0.05). The low force induced the gab between specimen increasing then the current flow difficult to pass and both of gab between specimen and nugget seize had increase (Q=I2Rt). When the resistance increased so that fusion zone will have a high heating. It had affected to nugget size, heat affected zone and mechanical properties decreasing. The electrode forces are complete 2.5 kN. tensile shear 9.21 kN and nugget size 5.82 mm. The data can be applied to be used as process monitoring of resistance spot weld quality


Sign in / Sign up

Export Citation Format

Share Document