welding time
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 32)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2044 (1) ◽  
pp. 012087
Author(s):  
Qi Li ◽  
Fengmei Liu ◽  
Min Xiong ◽  
Bin Hou ◽  
Yaoyong Yi ◽  
...  

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 319
Author(s):  
Sukarman Sukarman ◽  
Amri Abdulah ◽  
Apang Djafar Shieddieque ◽  
Nana Rahdiana ◽  
Khoirudin Khoirudin

This article present the optimization work describes out to joint the dissimilar galvanized steel of SECC-AF (JIS G 3313) and SGCC (JIS G 3302) material. A zinc coating on the surfaces of the galvanized steel sheets will decrease the weldability characteristic of the material. This study used dissimilar galvanised steel sheets to obtain the highest tensile shear strength from the specified resistance spot welding. This research used the Taguchi method with 4-variables and mixed-experimental levels. The mixed-experimental level, namely 2-experimental levels for the first variable and 3-experimental levels for other variables. The highest tensile shear strength was achieved in 5282.13 N. This condition is achieved at a squeezed time of 20 cycles, 27 kA-welding currents, welding time of 0.5 seconds, and holding time of 18 cycles. The S/N ratio analysis has shown the welding current had the most significant effect, followed by welding time, squeeze time, and holding time. The delta values of S/N ratio were 0.79, 0.64, 0.26 and 0.07, respectively. The ANOVA analysis has shown that the P-value of welding current and welding time is 0.006 (0.6%) and 0.015 (1.5%), respectively. This result is expected for optimizing resistance spot welding quality in other materials or significant aspects.


2021 ◽  
Author(s):  
Ghiath Guy Mansour

Abstract Fatigue is a primary challenge in the design of steel catenary risers (SCRs) and different measures and methods are utilized to mitigate it. Traditional upset ends and steel lazy wave risers (SLWRs) are such methods to mitigate fatigue. SLWRs were first used in 2009 on the Espirito Santo floating, production, storage, and offloading (FPSO) vessel of Shell Company's Parque das Conchas (BC-10) project offshore Brazil. SLWRs have been used increasingly since then and gained popularity especially in recent years. A novel patented tubular connection assembly referred to as Flared Thickened Ends (FTEs) improves the fatigue life of SCRs and welded connections in general. This novel assembly has many advantages. It overcomes the thickness limitation of welding traditional upset ends and reduces offshore welding time, cost, and risk. When FTEs are used in simple SCRs, they render simple SCRs a robustly viable alternative at significantly lower cost, shorter schedule, and with many additional advantages as compared to SLWRs. Of the many advantages, simple SCRs are more straightforward to configure, analyze, design, and install using varied installation methods and vessels. Simple SCRs use less materials and offer better long-term integrity, especially for insulated SCRs. In addition, they have a smaller footprint and are less prone to clashing than SLWRs.


2021 ◽  
Author(s):  
Mitsuhiro Watanabe ◽  
Masaya Kato ◽  
Yu Noguchi ◽  
Etsuhiro Tsukidate ◽  
Kazunori Yoshida

2021 ◽  
Author(s):  
Guangte Xiang ◽  
Yurui Hu ◽  
Sheng Zeng ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Abstract Electrofusion (EF) welding is one of the most common connection methods for polyethylene (PE) pipe, as well as thermoplastic pipe and reinforced composite pipe. Conventional EF welding generally adopts constant-voltage welding mode. The welding machine outputs a constant welding voltage to heat the resistance wire within specific welding time. In our previous study, intelligent welding machine was designed to ensure the quality of the EF joint, based on the study of the temperature field in EF joint. In this paper, three experiments were used to show the difference between the intelligent welding machine and traditional welding machine. The intelligent welding machine can actively adjust the welding parameters to ensure the quality of EF joint even it was given the wrong welding voltage and welding time. Compared with the traditional welding machine, the intelligent welding machine can automatically control the maximum temperature and the depth of melting region in EF joint during the welding process, and this method applies for EF joints with various diameters or design welding parameters.


2021 ◽  
Vol 8 (6) ◽  
pp. 127-132
Author(s):  
Sibete. G ◽  
Eyitemi. T

Melting efficiency which indicates how much of the heat deposited by the welding operation is used to produce melting is one of the most important parameters considered in Tungsten Inert Gas (TIG) welding when assessing the performance of welds. In the field of welding, a good melting efficiency results in the development of a dense weld pool. This study is conducted to optimize and predict the melting efficiency of mild steel weldment, using Genetic Algorithm. Genetic Algorithm (GA), which is an optimization method that mimics the evolution process and operates on the basis of the theory of natural selection and evolution was used to analyse the results. The result shows that a combination of current 239.03A, voltage 29.87V, welding speed 56.59mm/s, welding time 79.15 sec, feed rate 130mm/s, will produce optimal melting efficiency of 44.72. Keywords: Melting Efficiency, Mild Steel Weldment, Genetic Algorithm, Optimization and Prediction.


2021 ◽  
Author(s):  
Andrew Macwan

Lightweighting has been regarded as a key strategy in the automotive industry to improve fuel efficiency and reduce anthropogenic environment-damaging, climate-changing, and costly emissions. Magnesium (Mg) alloys and Aluminum (Al) alloys are progressively more used in the transportation industries to reduce the weight of vehicles due to their high strength-to-weight ratio. Similarly, high strength low alloy (HSLA) steel is widely used to reduce gauge thickness and still maintain the same strength, and thereby reduce vehicle weight as well. A multi-material design of automotive structures and parts inevitably involve similar Mg-to-Mg and dissimilar Mg-to-Al, Al-to-steel, and Mg-to-Cu joints. Ultrasonic spot welding (USW) – a solid-state joining technique has recently received significant attention due to its higher efficiency in comparison with conventional fusion welding techniques. In this study, USW was used to generate similar joints of low rare-earth containing ZEK100 Mg alloy sheets and dissimilar ZEK100-to-Al5754, Al6111-to-HSLA steel, and Mg-to-Cu joints at different levels of welding energy or welding time. To optimize welding process and identify key factors affecting the weld strength, microstructural evolution, microhardness test, tensile lap shear test, fatigue test, and fracture analysis were performed on similar and dissimilar ultrasonic spot welded (USWed) joints. Dynamic recrystallization and grain coarsening were observed during Mg-to-Mg similar welding while rapid formation and growth of interface diffusion layer were observed in all dissimilar joints in the present study. It was due to significantly high strain rate (~103 s-1) and high temperature generated via frictional heating during USW. The interface diffusion layer was analyzed by SEM, EDS and XRD phase identification techniques which showed the presence of eutectic structure containing intermetallic compounds (IMCs). As a result, brittleness at the interface increased. The Zn coating in dissimilar USWed Al-to-steel joints eliminated the formation of brittle IMCs of Al-F, which were replaced by relatively ductile AlZn eutectic. The optimum welding energy or welding time during similar and dissimilar USW of lightweight alloys with a sheet thickness of 1-2 mm was in the range of ~500 J to 2000 J (~0.25 s to 1 s).


2021 ◽  
Author(s):  
Andrew Macwan

Lightweighting has been regarded as a key strategy in the automotive industry to improve fuel efficiency and reduce anthropogenic environment-damaging, climate-changing, and costly emissions. Magnesium (Mg) alloys and Aluminum (Al) alloys are progressively more used in the transportation industries to reduce the weight of vehicles due to their high strength-to-weight ratio. Similarly, high strength low alloy (HSLA) steel is widely used to reduce gauge thickness and still maintain the same strength, and thereby reduce vehicle weight as well. A multi-material design of automotive structures and parts inevitably involve similar Mg-to-Mg and dissimilar Mg-to-Al, Al-to-steel, and Mg-to-Cu joints. Ultrasonic spot welding (USW) – a solid-state joining technique has recently received significant attention due to its higher efficiency in comparison with conventional fusion welding techniques. In this study, USW was used to generate similar joints of low rare-earth containing ZEK100 Mg alloy sheets and dissimilar ZEK100-to-Al5754, Al6111-to-HSLA steel, and Mg-to-Cu joints at different levels of welding energy or welding time. To optimize welding process and identify key factors affecting the weld strength, microstructural evolution, microhardness test, tensile lap shear test, fatigue test, and fracture analysis were performed on similar and dissimilar ultrasonic spot welded (USWed) joints. Dynamic recrystallization and grain coarsening were observed during Mg-to-Mg similar welding while rapid formation and growth of interface diffusion layer were observed in all dissimilar joints in the present study. It was due to significantly high strain rate (~103 s-1) and high temperature generated via frictional heating during USW. The interface diffusion layer was analyzed by SEM, EDS and XRD phase identification techniques which showed the presence of eutectic structure containing intermetallic compounds (IMCs). As a result, brittleness at the interface increased. The Zn coating in dissimilar USWed Al-to-steel joints eliminated the formation of brittle IMCs of Al-F, which were replaced by relatively ductile AlZn eutectic. The optimum welding energy or welding time during similar and dissimilar USW of lightweight alloys with a sheet thickness of 1-2 mm was in the range of ~500 J to 2000 J (~0.25 s to 1 s).


2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
S. Sukarman ◽  
A. Abdulah

The present study features analytical and experimental results of optimizing resistance spot welding performed using a pneumatic (electrode) force system (PFS). This optimization was carried out to incorporate the galvanized steel sheet material SECC-AF (JIS G 3313) and SPCC-SD (JIS 3141) sheet plate coated with zinc with a thickness of about 2.5 microns. The zinc coating on the metal surface causes its weldability to decrease. This study aims to obtain the highest tensile shear strength test results from the combination of the specified resistance spot welding parameters. The research method used the Taguchi method using four variables and a combination of experimental tingkats. This study's experimental tingkat is two tingkats in the first parameter and three tingkats in other parameters. Taguchi optimization results show that the highest tensile shear strength test obtained is 5049.64 N. This was achieved at 22 cycles of squeeze time, 25 kA of welding current, and 0,6-second welding-time, and 12 cycles of holding-time. The S / N ratio analysis found that the welding time had the most significant effect, followed by welding current, holding time, and squeeze time. The delta S / N ratio values were 0.62, 0,41, 0.34 and 0.07, respectively.


Sign in / Sign up

Export Citation Format

Share Document