scholarly journals FEM ANALYSIS FOR HYSTERETIC BEHAVIOR OF THIN-WALLED STIFFENED RECTANGULAR STEEL COLUMNS WITH IN-FILLED CONCRETE

2010 ◽  
Vol 66 (4) ◽  
pp. 816-835
Author(s):  
Yoshiaki GOTO ◽  
Kosuke MIZUNO ◽  
Ghosh Prosenjit KUMAR ◽  
Yusuke FUJII
2007 ◽  
Vol 63 (1) ◽  
pp. 122-141 ◽  
Author(s):  
Yoshiaki GOTO ◽  
Kunsheng JIANG ◽  
Makoto OBATA

1998 ◽  
Vol 124 (11) ◽  
pp. 1290-1301 ◽  
Author(s):  
Yoshiaki Goto ◽  
Qingyun Wang ◽  
Makoto Obata

2007 ◽  
Vol 26-28 ◽  
pp. 337-340 ◽  
Author(s):  
Seung Sik Lee ◽  
Soo Ha Chae ◽  
Soon Jong Yoon ◽  
Sun Kyu Cho

The strengths of PFRP thin-walled columns are determined according to the modes of buckling which consist of local mode for short columns, global mode for long columns, and interaction mode between local and global modes for intermediate columns. Unlike the local and global buckling, the buckling strength of interaction mode is not theoretically predictable. Refined theoretical approaches which can account for different elastic properties of each plate component consisting of a PFRP thin-walled member are used. Based on both the analytical buckling loads and the experimentally measured buckling loads from literatures, the accuracies of Ylinen’s equation and modified AISC/LRFD column design equation for isotropic steel columns were compared. From the comparison, it was found that the modified AISC/LRFD column design equation is more suitable for the prediction of the buckling loads of PFRP thin-walled members than Ylinen’s equations.


2018 ◽  
Vol 72 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Ali Dadrasi ◽  
Mehdi Beynaghi ◽  
Sasan Fooladpanjeh
Keyword(s):  

2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


2020 ◽  
Vol 1 (2) ◽  
pp. 38-39
Author(s):  
Tran Tuan Nam

In a seismic incident, the structural steel columns are commonly damaged with local buckling formulation at either the top or bottom ends. This study analyzes and simulates the hysteretic behavior of a hollow square steel column under cyclic loading by adopting the fiber-element approach. This method discretizes the hinge zone into a series of fibers and considers buckling behavior of those fibers along the column wall. The analytical result was achieved in good agreement with the component test.


Sign in / Sign up

Export Citation Format

Share Document