scholarly journals A CALCULATION METHOD OF ACTIVE EARTH PRESSURE DURING EARTHQUAKE ON THE CANTILEVER RETAINING WALL

Author(s):  
Akira SAKAI
2012 ◽  
Vol 204-208 ◽  
pp. 255-258
Author(s):  
Guang Qi Sheng ◽  
Ying Hui Chen ◽  
Fang Sun ◽  
Bo Wei ◽  
Yan Lian Pan

To study the influence of active earth pressure caused by the ditch after retaining wall, we will treat the ditch as unloading, and use the resolve of uniformly distributed load on half-infinite plane boundary to get the calculation method to get the influence of active earth pressure caused by the ditch after retaining wall. At last, from an example, we will get the picture of active earth pressure caused by the ditch after retaining wall, and analysis the regular pattern and characteristics.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


DYNA ◽  
2017 ◽  
Vol 84 (202) ◽  
pp. 9-15
Author(s):  
André Luís Brasil Cavalcante ◽  
Juan Félix Rodríguez Rebolledo

En este artículo se describe una metodología basada en el método de estimación puntual de Rosenblueth para el análisis del empuje activo desarrollado en un muro de retención con relleno cohesivo-friccionante bajo condiciones de carga sísmica. El principio básico de esta metodología es usar dos estimaciones puntales, i.e., la desviación estándar y el valor medio, para examinar una variable en el análisis de seguridad. Es posible mostrar que aumentando el valor del coeficiente de aceleración sísmica horizontal, el factor de seguridad por volteo decrece y la probabilidad de falla aumenta, especialmente para coeficientes mayores que 0.2. Por otro lado, es observado que el valor medio del factor de seguridad crece cuando aumenta el coeficiente de aceleración sísmica vertical, sin embargo la probabilidad de falla se mantiene prácticamente igual para el valor del factor de seguridad considerado como crítico (1.15).


2012 ◽  
Vol 49 (6) ◽  
pp. 651-658 ◽  
Author(s):  
Pérsio L.A. Barros ◽  
Petrucio J. Santos

A calculation method for the active earth pressure on the possibly inclined face of a retaining wall provided with a drainage system along the soil–structure interface is presented. The soil is cohesionless and fully saturated to the ground surface. This situation may arise during heavy rainstorms. To solve the problem, the water seepage through the soil is first analyzed using a numerical procedure based on the boundary element method. Then, the obtained pore-water pressure is used in a Coulomb-type formulation, which supposes a plane failure surface inside the backfill when the wall movement is enough to put the soil mass in the active state. The formulation provides coefficients of active pressure with seepage effect which can be used to evaluate the active earth thrust on walls of any height. A series of charts with values of the coefficients of active earth pressure with seepage calculated for selected values of the soil internal friction angle, the wall–soil friction angle, and the wall face inclination is presented.


2014 ◽  
Vol 5 (1) ◽  
pp. 39-57
Author(s):  
Sima Ghosh ◽  
Arijit Saha

In the present analysis, using the horizontal slice method and D'Alembert's principle, a methodology is suggested to calculate the pseudo-dynamic active earth pressure on battered face retaining wall supporting cohesive-frictional backfill. Results are presented in tabular form. The analysis provides a curvilinear rupture surface depending on the wall-backfill parameters. Effects of a wide range of variation of parameters like wall inclination angle (a), wall friction angle (d), soil friction angle (F), shear wave velocity (Vs), primary wave velocity (Vp), horizontal and vertical seismic accelerations (kh, kv) along with horizontal shear and vertical loads and non-linear wedge angle on the seismic active earth pressure coefficient have been studied.


Sign in / Sign up

Export Citation Format

Share Document