scholarly journals Violent Wave Impact on Vertical Wall using Pressure-Impulse Theory

2007 ◽  
Vol 54 ◽  
pp. 811-815
Author(s):  
Nguyen Danh Thao ◽  
Hiroshi TAKAGI ◽  
Tomoya SHIBAYAMA
Author(s):  
Deborah J. Wood ◽  
D. Howell Peregrine ◽  
Tom Bruce

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2849
Author(s):  
Shudi Dong ◽  
Md Salauddin ◽  
Soroush Abolfathi ◽  
Jonathan Pearson

This study investigates the variation of wave impact loads with the geometrical configurations of recurve retrofits mounted on the crest of a vertical seawall. Physical model tests were undertaken in a wave flume at the University of Warwick to investigate the effects of the geometrical properties of recurve on the pressure distribution, overall force, and overturning moment at the seawall, subject to both impulsive and non-impulsive waves. Additionally, the wave impact and quasi-static loads on the recurve portion of the retrofitted seawalls are investigated to understand the role of retrofitting on the structural integrity of the vertical seawall. Detailed analysis of laboratory measurements is conducted to understand the effects of overhang length and height of the recurve wall on the wave loading. It is found that the increase in both recurve height and overhang length lead to the increase of horizontal impact force at an average ratio of 1.15 and 1.1 times larger the reference case of a plain vertical wall for the tested configurations. The results also show that the geometrical shape changes in recurve retrofits, increasing the overturning moment enacted by the wave impact force. A relatively significant increase in wave loading (both impact and quasi-static loads) are observed for the higher recurve retrofits, while changes in the overturning moment are limited for the retrofits with longer overhang length. The data generated from the physical modelling measurements presented in this study will be particularly helpful for a range of relevant stakeholders, including coastal engineers, infrastructure designers, and the local authorities in coastal regions. The results of this study can also enable scientists to design and develop robust decision support tools to evaluate the performance of vertical seawalls with recurve retrofitting.


Author(s):  
David Newborn ◽  
Nels Sultan ◽  
Pierre Beynet ◽  
Tim Maddux ◽  
Sungwon Shin ◽  
...  

Large-scale hydraulic model tests and detail numerical model investigations were conducted on recurved wave deflecting structures to aid in the design of wave overtopping mitigation for vertical walls in shallow water. The incident wave and storm surge conditions were characteristic return period events for an offshore island on the North Slope of Alaska. During large storm events, despite depth-limited wave heights, a proposed vertical wall extension was susceptible to wave overtopping, which could potentially cause damage to equipment. Numeric calculations were conducted prior to the experimental tests and were used to establish the relative effectiveness of several recurved parapet concepts. The numerical simulations utilized the COrnell BReaking waves and Structures (COBRAS) fluid modeling program, which is a Volume-of-Fluid (VOF) model based on Reynolds Averaged Navier-Stokes equations [1] [2]. The experimental testing was conducted in the Large Wave Flume (LWF) at Oregon State University, O.H. Hinsdale Wave Research Laboratory. The experimental test directly measured the base shear force, vertical force, and overturning moment applied to the recurved parapets due to wave forcing. Wave impact pressure on the parapet and water particle velocities seaward of the wall were also measured. Results from the experimental testing include probability of exceedance curves for the base shear force, vertical force, and overturning moment for each storm condition. Qualitative comparisons between the experimental tests and the COBRAS simulations show that the numerical model provides realistic flow on and over the parapet.


Author(s):  
Jannette B. Frandsen ◽  
Francis Bérubé

The present tests are conducted in the new Québec Coastal Physics Laboratory, Canada. The flume has a depth and a width of 5 m and is 120 m long. This paper presents large scale experiments of water wave impact on a vertical wall following wave runup on a mixed sand-gravel-cobble beach. This present study is concerned with advancing knowledge on rapidly varying pressure magnitude and distributions on different types of sea/river/harbor walls. Protection against extreme events and subsequent coastal erosion is a key theme of application. Herein is presented preliminary test series which has focus on forces on vertical walls. Specifically, 27 pressure sensors are mounted on the vertical wall with a total test area of 1.2 m wide and 2.4 m high and is a stiffened aluminum plate. The outer regions of the wall are made of steel to span the entire width of the tank. The wall is designed to behave as a rigid plate. The geometric model to full scale is about 1:4. The incoming waves evolve on a flat bed to climb the final 25 m on a beach with slope with constant slope of 1:10. A small regular wave train forms the basis for investigations of force patterns on the wall. Herein, our preliminary findings reported are based on selected 6 test series (18 impacts out of 150 impacts). In general, wall pressures greater than 1 MPa and 10 m run-up are easily developed even with moderate amplitude waves at the inlet. We will discuss some details of the underlying mechanism of various types of breaking and impact on the wall. The peak pressure identified on the wall with the mixed gravel beach surface was 1.23 million N/m2 occurring in 0.2 milli seconds. It was cuased by a plunging breaker with a relatively large air pocket (∼0.11 m2). It was further identified that the maximum pressure on the wall does not necessarily give the maximum jet velocity (equivalent to vertical force considered in design of on parapets). They are independent quantities in these very random rapid processes. The maximum jet velocity was in the order of 35 m/s but could higher on a different beach surface. Further, it was found that the maximum waves are not necessarily the most critical ones as the waves break and therefore dissipates its energy before reaching the wall. A plunging breaker with a relatively large airpocket with a crest tip located at the top part of the wall resulted in max. peak wall pressure. One impact case caused a near simultaneous double peak pressure generated by a plunging breaker with two relatively small airpockets (0.003 m2 and 0.01 m2). This was the impact case responsible for the max. vertical jet velocity. We further found that the max. peak water pressure of the plunging breakers had a similar order of magnitude as the max. pressure within an air pocket.


2014 ◽  
Vol 70 (2) ◽  
pp. I_546-I_551
Author(s):  
Masahide TAKEDA ◽  
Kyohei KAWASE ◽  
Takaaki SHIGEMATSU ◽  
Muneo TSUDA ◽  
Takashi HABUCHI ◽  
...  

2020 ◽  
Vol 61 (9) ◽  
Author(s):  
T. Mai ◽  
C. Mai ◽  
A. Raby ◽  
D. M. Greaves

Abstract Local and global loadings, which may cause the local damage and/or global failure and collapse of offshore structures and ships, are experimentally investigated in this study. The research question is how the elasticity of the structural section affects loading during severe environmental conditions. Two different experiments were undertaken in this study to try to answer this question: (i) vertical slamming impacts of a square flat plate, which represents a plate section of the bottom or bow of a ship structure, onto water surface with zero degree deadrise angle; (ii) wave impacts on a truncated vertical wall in water, where the wall represents a plate section of a hull. The plate and wall are constructed such that they can be either rigid or elastic by virtue of a specially designed spring system. The experiments were carried out in the University of Plymouth’s COAST Laboratory. For the cases considered here, elasticity of the impact plate and/or wall has an effect on the slamming and wave impact loads. Here the slamming impact loads (both pressure and force) were considerably reduced for the elastic plate compared to the rigid one, though only at high impact velocities. The total impact force on the elastic wall was found to reduce for the high aeration, flip-through and slightly breaking wave impacts. However, the impact pressure decreased on the elastic wall only under flip-through wave impact. Due to the elasticity of the plates, the impulse of the first positive phase of pressure and force decreases significantly for the vertical slamming impact tests. This significant effect of hydroelasticity is also found for the total force impulse on the vertical wall under wave impacts. Graphic abstract Hydroelasticity effects on water-structure impacts: a impact pressures on dropped plates; b impact forces on dropped plates; c, d, e, f wave impact pressures on the vertical walls; g wave impact forces on the vertical walls; h wave force impulses on the vertical walls: elastic wall 1 vs. rigid wall (filled markers); elastic wall 2 vs. rigid wall (empty markers)


2010 ◽  
Vol 1 (3-4) ◽  
pp. 155-166 ◽  
Author(s):  
C. Rajasekaran ◽  
S.A. Sannasiraj ◽  
V. Sundar

Sign in / Sign up

Export Citation Format

Share Document