Wave Impact on a Wall Using Pressure-Impulse Theory. I: Trapped Air

Author(s):  
Deborah J. Wood ◽  
D. Howell Peregrine ◽  
Tom Bruce
2007 ◽  
Vol 54 ◽  
pp. 811-815
Author(s):  
Nguyen Danh Thao ◽  
Hiroshi TAKAGI ◽  
Tomoya SHIBAYAMA

2019 ◽  
Vol 867 ◽  
Author(s):  
Amin Ghadirian ◽  
Henrik Bredmose

A pressure impulse model is presented for wave impact on vertical circular cylinders. Pressure impulse is the time integral of the pressure during an impact of short time scale. The model is derived for a simplistic geometry and has relative impact height, crest length and cylinder radius as effective variables. The last parameter, the maximum angle of impact, is free and can be calibrated to yield the right force impulse. A progression of simpler pressure impulse models are derived in terms of a three-dimensional box generalization of the two-dimensional wall model and an axisymmetric model for vertical cylinders. The dependence on the model parameters is investigated in the simpler models and linked to the behaviour of the three-dimensional cylinder model. The model is next validated against numerical results for a wave impact for a phase- and direction-focused wave group. The maximum impact angle is determined by calibration against the force impulse. A good match of the pressure impulse fields is found. Further comparison to the force impulse of two common models in marine engineering reveals improved consistency for the present model. The model is found to provide a promising representation of the pressure impulse field, based on a limited number of input parameters. Its further validation and potential as a robust tool in force and response prediction is discussed.


2019 ◽  
Author(s):  
I. Gatin ◽  
S. Liu ◽  
N. Vladimir ◽  
H. Jasak

Abstract A computational method for predicting wave impact loads where compressible air effects might be present is presented in this paper. The method is a Finite Volume based Computational Fluid Dynamics method where air is modelled as a compressible ideal gas while water is treated as incompressible. Special numerical treatment of the interface based on the Ghost Fluid Method enables capturing the sharp transition in compressible properties of air and water across the free surface, making the method accurate for predicting trapped air pockets during wave impacts or slamming. The approach enables predicting impacts where trapped air pockets play an important role in the loading of the structure due to the capacity to absorb and redistribute wave impact energy. The present approach is validated on a falling water slamming case where trapped air compression is present. Next, a full scale wave breaking impact on a vertical wall is simulated and the results compared to experimental measurements, with trapped air compression effects. Finally, the method is applied on a breakwater green water loading calculation of an Ultra Large Container Ship in an extreme focused wave impact based on the Response Conditioned Wave theory. Motion of the container vessel is calculated directly during the simulation. The calculation is shown to be computed with limited computer resources in reasonable amount of time. Overall the approach proved to be accurate, robust and efficient, providing a tool for assessing wave impact loads with or without compressible air effects.


2013 ◽  
Vol 61 (3) ◽  
pp. 613-621 ◽  
Author(s):  
W. Barnat

Abstract The article presents an approach to modeling the internal membrane pressure wave inside a sealed structure. During an explosion near a vehicle when a pressure wave reaches a hull, a pressure wave inside arises due to the hull’s bottom and the deformation of sides. They act like the piston - membrane. This membrane transfers the pressure impulse into the vehicle’s interior. A pressure increase causes the damage of internal organs or even death of occupants. In case of an armor penetration the pressure increase may be even larger. One of basic methods to protect a crew is to open hatches. However, such a method cannot be used in a contaminated area.


2012 ◽  
Vol 57 (3) ◽  
pp. 601-618 ◽  
Author(s):  
Vasyl Moisyshyn ◽  
Vasyl Yacyshyn ◽  
Oleg Vytyaz

Abstract Studied here are the results of the asymmetric problem solution of the thick walled circular cylinder elasticity using the spatial characteristics technique. The practical implementation of the solution of the problem is based on the calculation of the stress-caused deformation state of the stuck drilling string zone affected by the explosion wave action upon the inner wall of the pipe. Suggested here is the technique for determining axual σz and circular σθ stress on the drill pipe wall as well as the radial displacements ur of the stuck drill pipe outer surface under the action of the explosion shock wave. The above technique enables to make a sound selection of the cylindrical explosive charge weight in order to avoid the residual strain during the drilling string shaping off and uncoupling the threaded joints or to prevent them from exceeding the admissible level.


Author(s):  
Liang-Yee Cheng ◽  
Rubens Augusto Amaro Junior

Sign in / Sign up

Export Citation Format

Share Document