scholarly journals NUMERICAL PREDICTION METHOD FOR ARBITRARILY-SHAPED BODIES MOVING IN THREE-DIMENSIONAL FLUIDS

2007 ◽  
Vol 51 ◽  
pp. 847-852
Author(s):  
Satoru USHIJIMA ◽  
Akira FUKUTANI ◽  
Susumu FUJIOKA ◽  
Iehisa NEZU
2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.


Author(s):  
Xiaochun Wang ◽  
Chen Chen ◽  
Jiangping Yuan ◽  
Guangxue Chen

Full-color three-dimensional (3D) printing technology is a powerful process to manufacture intelligent customized colorful objects with improved surface qualities; however, poor surface color optimization methods are the main impeding factors for its commercialization. As such, the paper explored the correlation between microstructure and color reproduction, then an assessment and prediction method of color optimization based on microscopic image analysis was proposed. The experimental models were divided into 24-color plates and 4-color cubes printed by ProJet 860 3D printer, then impregnated according to preset parameters, at last measured by a spectrophotometer and observed using both a digital microscope and a scanning electron microscope. The results revealed that the samples manifested higher saturation and smaller chromatic aberration ([Formula: see text]) after postprocessing. Moreover, the brightness of the same color surface increased with the increasing soaked surface roughness. Further, reduction in surface roughness, impregnation into surface pores, and enhancement of coating transparency effectively improved the accuracy of color reproduction, which could be verified by the measured values. Finally, the chromatic aberration caused by positioning errors on different faces of the samples was optimized, and the value of [Formula: see text] for a black cube was reduced from 8.12 to 0.82, which is undetectable to human eyes.


Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


1991 ◽  
Author(s):  
T. FUJIMORI ◽  
M. KAWAI ◽  
H. IKEDA ◽  
Y. ANDO ◽  
Y. OHMORI

Author(s):  
Shih H. Chen ◽  
Anthony H. Eastland

A compressible three-dimensional implicit Euler solution method for turbomachinery flows has been developed. The goal of the present study is to develop an efficient and reliable method that can be used to replace the semi-empirical, semi-analytical quasi-three-dimensional turbomachinery flow prediction method currently being used for multi-stage turbomachinery design at early design stages. Currently, a methodology has been developed based on an inviscid flow model (Euler solver) and tested on single blade rows for validation. The method presented here is derived from the Beam and Warming implicit approximate factorization (AF) finite difference algorithm. To avoid high frequency numerical instabilities associated with the use of central differencing schemes to obtain a spatial second order accuracy, a combined explicit and implicit artificial dissipation model is adopted. This model consists of a second order implicit dissipation and mixed second/fourth order explicit dissipation terms. A Cartesian coordinate H-grid generated by a three-dimensional interactive grid generator developed by Beach is used. Results for SSME High Pressure Fuel Turbine are presented and the comparison with experimental data is discussed. The use of the present implicit Euler method and the three-dimensional turbomachinery interactive grid generator shows that turnaround time could be as short as one day using a workstation. This allows the designers to explore optimal design configurations at minimum cost.


2006 ◽  
Vol 22 (4) ◽  
pp. 331-338
Author(s):  
M. Chang ◽  
Y.-H. Hu ◽  
S.-W. Chau ◽  
K.-H. Lin

AbstractThe mixing behavior of a two-channel micromixer with a circular mixing chamber at four different chamber depths and six different flow rates had been investigated. Experiments were implemented with the mixings of two fluids. An image inspection method using the variance of the image gray level contrast as the measurement parameter to determine the mixing efficiency distribution in these mixers. The steady, three-dimensional and laminar flow fields inside the micromixers were also simulated numerically with a finite volume discretization. Through the numerical integration over the chamber depth, the three-dimensional numerical prediction could be compressed into a two-dimensional result, which could be directly used to compare with the experimental measurements. Experimental results show that the measured mixing efficiency is raised with the increase of chamber depth. The numerical prediction of mixing efficiency agreed qualitatively with those obtained from the experimental measurements, while the ratio of the depth to diameter of the mixing chamber is big enough to eliminate the viscosity effect.


Sign in / Sign up

Export Citation Format

Share Document