A Fracture Strain Based Numerical Prediction Method For Hydrogen Effect on Fracture Toughness

Author(s):  
Gyo-Geun Youn ◽  
Yun-Jae Kim ◽  
Jong-Sung Kim ◽  
Poh-Sang Lam
2017 ◽  
Vol 898 ◽  
pp. 753-757
Author(s):  
Le Le Gui ◽  
Tong Xu ◽  
Bin An Shou ◽  
Han Kui Wang ◽  
Jing Xiang

The fracture toughness tests and a new miniature specimen technology named hydraulic bulge test (HBT) of 3Cr1Mo1/4V at four service time were carried out. Four J-R resistance curves by single-specimen method with one inch CT specimens were obtained to compute the JIC. Different definitions of equivalent fracture strain according to the section morphologies of HBT testing specimens were compared, and fracture energy of miniature specimens with three different thicknesses (0.4mm, 0.5mm and 0.6mm) were also calculated. Results showed that the typical HBT load-deflection curve can be divided into four sections like SPT curve. Equivalent fracture strain and fracture energy EHB can be chosen as two fracture parameters for the HBT specimen. Ductile fracture toughness JIC can be related approximately linearly to both the equivalent fracture strain and fracture energy EHB.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1469 ◽  
Author(s):  
Shuai Wang ◽  
Xiaolei Wang ◽  
Yanrong Wang ◽  
Hang Ye

In aircraft gas turbine engines, gears in the transmission system are typically cyclic in structure and inevitably encounter large dynamic loads, such as meshing excitation, resulting in high vibration loads in resonance. To prevent gear resonance failure, a ring damper is employed to reduce the resonance response. As relative motion between the gear and the ring damper occurs, vibration loads can be reduced by friction energy dissipation. Moreover, the gears in the aircraft engine are thin-walled and their axial stiffness is much smaller than radial stiffness; thus, it is easier for axial vibration to cause resonance failure. This paper proposes an equivalent damping numerical prediction method for a ring damper under axial vibration, which greatly shortens the calculation time and prevents the forced response analysis of nonlinear structures. Via this method, the influence of ring damper structural parameters on friction damping in gears under axial vibration is investigated. The results indicate that the friction coefficient and mass of the ring damper have a great influence on damping performance.


Author(s):  
Jin-Ha Hwang ◽  
Gyo-Geun Youn ◽  
Naoki Miura ◽  
Yun-Jae Kim

To evaluate the structural integrity of nuclear power plant piping, it is important to predict ductile tearing of circumferential cracked pipe from the view point of Leak-Before-Break concept under seismic conditions. CRIEPI (Central Research Institute of Electric Power Industry) conducted fracture test on Japanese carbon steel (STS410) circumferential through-wall cracked pipes under monotonic or cyclic bending load in room temperature. Cyclic loading test conducted variable experimental conditions considering effect of stress ratio and amplitude. In the previous study, monotonic fracture pipe test was simulated by modified stress-strain ductile damage model determined by C(T) specimen fracture toughness test. And, ductile fracture of pipe under cyclic loading simulated using damage criteria based on fracture strain energy from C(T) specimen test data. In this study, monotonic pipe test result is applied to determination of damage model based on fracture strain energy, using finite element analysis, without C(T) specimen fracture toughness test. Ductile fracture of pipe under variable cyclic loading conditions simulates using determined fracture energy damage model from monotonic pipe test.


2010 ◽  
Vol 77 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Hiroyuki Hirakata ◽  
Takeshi Yamada ◽  
Yoshiki Nobuhara ◽  
Akio Yonezu ◽  
Kohji Minoshima

Author(s):  
Yuichi Fukuta ◽  
Hiroshi Kanasaki ◽  
Takahisa Yamane

This report summarizes the results of a scoping fracture toughness tests at high and low temperature for thermally aged cast austenitic stainless steels (CASSs) in a pressurized water reactor (PWR) environment. CF8M (ferrite content = 10.1%, 18.9%) and CF8 (ferrite content = 10.5%) were thermally aged up to 5,000 hours at 465°C. Tensile tests, Charpy impact tests and fracture toughness tests were conducted in air at 325°C and 50°C. Fracture toughness tests were also performed in simulated PWR primary water. Although the effect of 325°C and 50°C in simulated PWR primary water and dissolved hydrogen on the fracture toughness (JIc and J-Δa relationship) were slightly observed, fracture toughness was greater than that predicted by the thermally aged fracture toughness prediction method (Hyperbolic-Time-Temperature-Toughness (H3T) model).


1994 ◽  
Vol 116 (4) ◽  
pp. 353-358 ◽  
Author(s):  
T. Iwadate ◽  
Y. Tanaka ◽  
H. Takemata

A single and generalized prediction method of fracture toughness KIC transition curves of pressure vessel steels has been greatly desired by engineers in the petro-chemical and nuclear power industries, especially from the viewpoint of life extension of reactor pressure vessels. In this paper, the toughness degradation of Cr-Mo steels during long-term service was examined and the two prediction methods of fracture toughness KIC transition curves were studied using the data of 54 heats. 1) The toughness degradation of 2 1/4Cr-1Mo steels levels off within around 50,000 h service. 2) The FATT versus J-factor (=(Si+Mn)(P+Sn)×104) and/or X (=(10P+5Sb+4Sn+As)x10−2) relationships to estimate the maximum embrittlement of Cr-Mo steels were obtained. 3) A master curve method developed by authors et al.; that is, the method using a KIC/KIC−US versus excess temperature master curve of each material was presented for 2 1/4Cr-1Mo, 1 1/4Cr-1/2Mo, 1Cr and 1/2Mo chemical pressure vessel steels and ASTM A508 C1.1, A508 C1.2, A508 C1.3 and A533 Gr.B C1.1 nuclear pressure vessel steels, where KIC−US is the upper-shelf fracture toughness and excess temperature is test temperature minus FATT. 4) A generalized prediction method to predict the KIC transition curves of any low-alloy steels was developed. This method consists of KIC/KIC−US versus T–T0 master curve and temperature shift ΔT between fracture toughness and CVN impact transition curves versus yield strength relationship, where To is the temperature showing 50 percent KIC−US of the material. 5) The KIC transition curves predicted using both methods showed a good agreement with the lower bound of measured KJC values obtained from JC tests.


Sign in / Sign up

Export Citation Format

Share Document