surface oscillation
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Koichi Yonezawa ◽  
Kosuke Nishimura ◽  
Takeshi Sano ◽  
Kazuyoshi Miyagawa ◽  
Yoshinobu Tsujimoto

Abstract Unsteady behaviors of free surface around a rotating vertical shaft in cylindrical stationary casing were investigated. Experiments were carried out with various rotating frequency of the shaft at two initial water levels. An axi-symmetrical free surface oscillation took place when the rotational speed of the shaft became larger than a certain value. The frequency of the free surface oscillation decreased as the rotating frequency increased. A theoretical model was developed, and the mechanisms of the free surface oscillation were clarified. The oscillation was found to be a sloshing mode excited by the change of fluid angular velocity, caused by the change of wetted areas on the inner rotating shaft and outer stationary casing, associated with the change in free surface height.


2021 ◽  
Author(s):  
Mohamed Mahjoub ◽  
Ngoc-Ha Dao ◽  
Khac-Long Nguyen ◽  
Seif Badri ◽  
Matthew Summersgill ◽  
...  

Abstract Overcoming friction in sliding mode represents a challenging task when drilling an unconventional well with a long lateral section. Among the possible ways to reduce these frictional forces is to use a surface oscillation tool (SOT). By alternating the rotation at surface between the forward and reverse directions, a part of the friction forces is transferred from the axial to tangential direction. Hence, a better transmission of the weight to the drill bit and increased rate of penetration can be achieved. To take full advantage of this tool, an accurate and fast modeling of the influence of its oscillation characteristics is necessary. The SOT is operated at surface by changing its rotation speed and number of wraps in forward and reverse directions. If these characteristics are underestimated, the torsional oscillationsare quickly stopped by the friction moments, and the rate of penetration is not increased enough. However, if they are over estimated, the torsional oscillations can reach the bent motor, and destabilize the tool face orientation (TFO). In this paper, a full time-domain dynamics model and a simplified model coupled with a stiff-string torque and drag model are used to identity the influence length of the SOT, and hence provide an opportunity to optimize its operating parameters. Full and simplified models are compared to each other to ensure their validity. Namely, the effect of the drillstring-wellbore contact distribution is showed to have a substantial impact on the SOT performance. Consequently, it was proved that optimal SOT characteristics Off-Bottom are generally not enough to overcome the friction when drilling. In addition, the torque and drag model is applied to a real case study of an unconventional well with surface and downhole data. It helps provide the driller with a guideline of recommendations on the SOT parameters. These results open some very interesting perspectives in terms of TFO accuracy and slide optimization. The use of modelling in the calibration of the SOT characteristics and the development of the simplified model are both novelties introduced here. This work should lead to significant improvement to extend the length of laterals with steerable mud motor with minimum tortuosity.


2021 ◽  
Author(s):  
Adrián Navas-Montilla ◽  
Carmelo Juez ◽  
Noelia Garijo

<p>Macro-roughness elements, such as lateral cavities and embayments, are usually built in the banks of rivers for different purposes. They can be used to create harbors, or to promote morphological diversity that enhance habitat suitability in an attempt to restore the sediment cycle in channelized rivers. In presence of lateral cavities, shallow water flows may exhibit a rhythmic water surface oscillation, called seiche. The formation of the seiche is triggered by the partially bounded in-cavity water body which leads to the generation of a standing wave. Amplitude and periodicity of the seiche is jointly controlled by the dominant eigenmodes of the standing wave and by the turbulent shear layer structures created at the opening of the cavity. Seiches have been studied in the past decades putting the focus on their impact on river hydrodynamics and morphodynamics. However, the study of the seiches from an energy harvesting perspective is still unexplored. Seiche waves could represent a distributed hydropower source with a low environmental impact, being energy extraction possibly integrated with river restoration works. In this work, we use an in-house  numerical simulation model to reproduce the water surface oscillation in a channel with multiple lateral cavities and study their wave energy potential. The interaction of multiple cavities has an additional effect in the propagation and formation of multiple standing waves, ultimately leading to two-dimensional and multi-modal seiche waves. Therefore, a detailed analysis of the seiche amplitude and energy spatial distribution is presented.</p>


2021 ◽  
Vol 314 ◽  
pp. 202-206
Author(s):  
Yu Katano ◽  
Keita Ando

Visualization experiments were performed to study the relation between free-surface motion and bubble translation in a 1-MHz ultrasonic cleaning bath. From the visualization with a video camera, the characteristic frequencies of the free-surface oscillation (under the acoustic radiation force) and the translational velocity of cavitation bubbles (trapped via the primary Bjerknes force) were extracted, showing that there is a strong correlation between the free-surface oscillation and bubble translation. From the context of megasonic cleaning, such free-surface oscillation is expected to contribute to uniform cleaning performance with cavitation bubbles.


Author(s):  
Hassan Saghi ◽  
Tommi Mikkola ◽  
Spyros Hirdaris

This paper examines the influence of oblique perforated baffles on the sloshing dynamics of rectangular liquid storage tanks. The analysis presented accounts for sway induced hydrodynamic forces and entropy generation. Internal liquid free surface oscillation is modelled by the volume of fluid method. The effect of baffle geometric parameters, orientation and porosity on loads is examined and numerical results are compared against a set of experiments. Consequently, an engineering method suggesting the optimum size, angle of inclination and topology of baffles for the case of a rectangular tank is presented. It is shown that implementation of optimized oblique porous dual baffles may reduce sloshing loads by up to 15%.


2020 ◽  
Vol 48 (3) ◽  
pp. 253-277 ◽  
Author(s):  
RAINER K. WUNDERLICH ◽  
MARKUS MOHR

The contribution of non-linear fluid flow effects to the damping of surface oscillations in the oscillation drop method was investigated in a series of experiments in an electromagnetic levitation device installed on the International Space station, ISS-EML. In order to correctly evaluate the damping time constant from measured surface oscillation decays the effect of a modulated signal response on measured surface oscillation decay curves was investigated. It could be shown that various experimentally observed signal patterns could be well represented by a modulated response. The physical origin of such modulations is seen in rotation and precession. Over a temperature range of 220 K covered by different surface oscillation excitation pulses with an initial sample shape deformation of 5 – 10% the amplitude of surface oscillations as a function of time could be very well represented by a Lamb type damping with a temperature dependent viscosity. A direct comparison of surface oscillation decay times measured in the same temperature range but for different oscillation amplitudes showed no non-linear contribution to the damping time constant with a confidence level better 10%.


Sign in / Sign up

Export Citation Format

Share Document