Evaluating Pediatric Brain Tumor Cellularity with Diffusion-Tensor Imaging

2001 ◽  
Vol 177 (2) ◽  
pp. 449-454 ◽  
Author(s):  
Karen M. Gauvain ◽  
Robert C. McKinstry ◽  
Pratik Mukherjee ◽  
Arie Perry ◽  
Jeffrey J. Neil ◽  
...  
Author(s):  
Holly A. Aleksonis ◽  
Ryan Wier ◽  
Matthew M. Pearson ◽  
Christopher J. Cannistraci ◽  
Adam W. Anderson ◽  
...  

2010 ◽  
Vol 26 (11) ◽  
pp. 1639-1645 ◽  
Author(s):  
William Gaetz ◽  
Nadia Scantlebury ◽  
Elysa Widjaja ◽  
James Rutka ◽  
Eric Bouffet ◽  
...  

2012 ◽  
Vol 224 (06) ◽  
Author(s):  
T Milde ◽  
M Zucknick ◽  
M Kool ◽  
A Korshunov ◽  
H Witt ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Santiago Cepeda ◽  
Sergio García-García ◽  
María Velasco-Casares ◽  
Gabriel Fernández-Pérez ◽  
Tomás Zamora ◽  
...  

Intraoperative ultrasound elastography (IOUS-E) is a novel image modality applied in brain tumor assessment. However, the potential links between elastographic findings and other histological and neuroimaging features are unknown. This study aims to find associations between brain tumor elasticity, diffusion tensor imaging (DTI) metrics, and cell proliferation. A retrospective study was conducted to analyze consecutively admitted patients who underwent craniotomy for supratentorial brain tumors between March 2018 and February 2020. Patients evaluated by IOUS-E and preoperative DTI were included. A semi-quantitative analysis was performed to calculate the mean tissue elasticity (MTE). Diffusion coefficients and the tumor proliferation index by Ki-67 were registered. Relationships between the continuous variables were determined using the Spearman ρ test. A predictive model was developed based on non-linear regression using the MTE as the dependent variable. Forty patients were evaluated. The pathologic diagnoses were as follows: 21 high-grade gliomas (HGG); 9 low-grade gliomas (LGG); and 10 meningiomas. Cases with a proliferation index of less than 10% had significantly higher medians of MTE (110.34 vs. 79.99, p < 0.001) and fractional anisotropy (FA) (0.24 vs. 0.19, p = 0.020). We found a strong positive correlation between MTE and FA (rs (38) = 0.91, p < 0.001). A cubic spline non-linear regression model was obtained to predict tumoral MTE from FA (R2 = 0.78, p < 0.001). According to our results, tumor elasticity is associated with histopathological and DTI-derived metrics. These findings support the usefulness of IOUS-E as a complementary tool in brain tumor surgery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiqun Zhang ◽  
Fengju Chen ◽  
Lawrence A. Donehower ◽  
Michael E. Scheurer ◽  
Chad J. Creighton

AbstractThe global impact of somatic structural variants (SSVs) on gene expression in pediatric brain tumors has not been thoroughly characterised. Here, using whole-genome and RNA sequencing from 854 tumors of more than 30 different types from the Children’s Brain Tumor Tissue Consortium, we report the altered expression of hundreds of genes in association with the presence of nearby SSV breakpoints. SSV-mediated expression changes involve gene fusions, altered cis-regulation, or gene disruption. SSVs considerably extend the numbers of patients with tumors somatically altered for critical pathways, including receptor tyrosine kinases (KRAS, MET, EGFR, NF1), Rb pathway (CDK4), TERT, MYC family (MYC, MYCN, MYB), and HIPPO (NF2). Compared to initial tumors, progressive or recurrent tumors involve a distinct set of SSV-gene associations. High overall SSV burden associates with TP53 mutations, histone H3.3 gene H3F3C mutations, and the transcription of DNA damage response genes. Compared to adult cancers, pediatric brain tumors would involve a different set of genes with SSV-altered cis-regulation. Our comprehensive and pan-histology genomic analyses reveal SSVs to play a major role in shaping the transcriptome of pediatric brain tumors.


Sign in / Sign up

Export Citation Format

Share Document