Disease-reducing effects of aqueous leaf extracts of annona glabra and wedelia calendulacea on fusarium basal rot of shallot caused by fusarium oxysporum

2017 ◽  
Vol 06 ◽  
pp. 23
Author(s):  
Vinh, N.V. ◽  
Khoa, N.D. ◽  
Hao, L.T.
2006 ◽  
Vol 16 (1) ◽  
pp. 177-181 ◽  
Author(s):  
Jessica A. Gutierrez ◽  
Ramon Molina-Bravo ◽  
Christopher S. Cramer

Fusarium basal rot (FBR), caused by Fusarium oxysporum f.sp. cepae, is a soilborne fungal disease that affects bulb onions (Allium cepa) worldwide. Winter-sown onion cultivars that are resistant to FBR are lacking. The goal of this project was to screen winter-sown onion germplasm for FBR resistance using a mature-bulb field screening at harvest and after 4 weeks in storage. The project was conducted for 2 years, and in each year, 22 winter-sown onion lines were grown in a field known to produce a high incidence of FBR-infected bulbs. At maturity, the basal plates of 20 randomly selected bulbs were cut transversely and each plate was scored for disease severity on a scale of 1 (no diseased tissue) to 9 (70% or more diseased tissue). Bulbs were stored and scored again at 4 weeks after harvest. Severity and incidence increased in storage for both years. NMSU 99-30, `NuMex Arthur', and `NuMex Jose Fernandez' showed the lowest disease severities and incidences in both years. For fields that produce a high incidence of FBR-infected bulbs, these cultivars could be grown with less loss to FBR at harvest and after storage than more FBR-susceptible cultivars. When developing FBR-resistant cultivars, breeding lines should be evaluated over multiple years and bulbs should be stored for 4 weeks before being screened.


2011 ◽  
Vol 30 (9) ◽  
pp. 1210-1215 ◽  
Author(s):  
Assefa Sintayehu ◽  
Chemeda Fininsa ◽  
Seid Ahmed ◽  
P.K. Sakhuja

2011 ◽  
Vol 30 (5) ◽  
pp. 560-565 ◽  
Author(s):  
Assefa Sintayehu ◽  
P.K. Sakhuja ◽  
Chemeda Fininsa ◽  
Seid Ahmed

HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 157-160 ◽  
Author(s):  
Jessica A. Gutierrez ◽  
Christopher S. Cramer

Fusarium basal rot (FBR), caused by Fusarium oxysporum Schlechtend.:Fr. f. sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans, is a soilborne fungal disease that affects bulb onions (Allium cepa L.) worldwide. Short-day onion cultivars that are resistant to FBR are lacking. The goal of this project was to screen fall-sown onion germplasm for FBR resistance using a mature bulb field screening at harvest and after 4 weeks in storage. The project was conducted for 2 years, and in each year, 26 fall-sown onion lines were grown in a field known to produce a high incidence of fusarium-basal-rot-infected bulbs. When all the bulbs in a plot were mature, the basal plates of 20 bulbs were cut transversely and each plate was rated for disease severity on a scale of one (no diseased tissue) to nine (70% or more diseased). Bulbs were stored and rerated at 2 and 4 weeks after harvest. Disease severity and incidence were higher in the first year than in the second year. Both severity and incidence increased as bulbs were stored for 4 weeks. NMSU 00-25 exhibited the lowest disease severity and incidence in both years at harvest time and after storage. `Buffalo' and `Cardinal' exhibited the highest severities and incidences across both years and at harvest time and after storage. Other entries exhibited high or low disease severity and incidence but not consistently across years and between harvest time and after storage. In the development of FBR resistant cultivars, breeding lines should be evaluated over multiple years and bulbs should be stored for 4 weeks before being screened.


2021 ◽  
Vol 37 (4) ◽  
Author(s):  
Muhammad Madni Afzal ◽  
Shahbaz Talib Sahi ◽  
Amer Habib ◽  
Waqas Ashraf ◽  
Muhammad Ahmad Zeshan ◽  
...  

Author(s):  
Dung Le ◽  
Kris Audenaert ◽  
Geert Haesaert

AbstractFusarium basal rot (FBR) is a soil-borne disease that affects Allium species worldwide. Although FBR has long been recognized as a major constraint to the production of economically important Allium species, information that could support disease management remains scattered. In this review, the current knowledge on the causal agents, symptomology and epidemiology, impact, and management strategies of FBR is synthesized. We highlight that FPR is associated with different complexes of several Fusarium species, of which Fusarium oxysporum and F. proliferatum are the most prevalent. These pathogenic complexes vary in composition and virulence, depending on sites and hosts, which can be challenging for disease management. Research to improve disease management using chemical pesticides, resistance cultivars, biocontrol agents, and cultural practices has achieved both promising results and limitations. Finally, research needs and future directions are proposed for the development of effective FBR management strategies.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1325
Author(s):  
Mohamed Z. M. Salem ◽  
Abeer A. Mohamed ◽  
Hayssam M. Ali ◽  
Dunia A. Al Al Farraj

Background: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. Methods: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene-linoleic acid (BCB) bleaching assays. Results: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 μg/mL). Additionally, the same extract observed the lowest concentration (4.5 μg/mL) that inhibited BCB bleaching. Conclusions: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates—a wilt pathogen—and C. maculatum leaf as a potent antioxidant agent.


Sign in / Sign up

Export Citation Format

Share Document