scholarly journals “TERPI” AS A QUANTITY OF THERMODYNAMIC POTENTIAL ENERGY SUPPLEMENTARY TO THE CONCEPT OF WORK AND HEAT

2010 ◽  
Vol 3 (2) ◽  
pp. 67-69
Author(s):  
RHA Sahirul Alim

Isothermal reversible thermodynamic processes were studied, where there will not occur flow of heat (q) in the system in accord with the second law of thermodynamic. It appear that the energy flow in the system cannot be explained adequately by considering the flow of P,V - work, usually indicated by w, in accordance with the first law, that is,  ΔU = q + w with q = 0.  Therefore, it is necessary to have another kind of work energy (potential) which is not electrical to explain such as the experiment of Boyle that results in the formula PV = C for a close ideal gas system undergoing an isothermal and reversible process. In this paper, a new work potential which is called ";;terpi";; is introduced, and is abbreviated as  τ (tau) and defined as: dτ ≡  - T dSrev = - dqrev.             Therefore, dt is also not an exact differential as dw and dq. For any isothermal reversible process, it can be written:   τ = -TΔSrev, and for redox reaction, such as an electrochemical cell, it is noteworthy to distinguish between τ system (τsyst) and τ reaction (τr) which combine together to become an electrical work flow, (wel) done by the system on the surrounding, so that: ΔGr = τsyst + τr = v F E             Furthermore, the studies of phase transitions, which occur isothermally, were also considered, e.g. the evaporation of a liquid into vapour at a certain T.  The heat given to this process cannot freely flow isothermally, but first it must be  changed into terpy and then added to the enthalpy of the vapour following the equation:     τvap = -TΔSvap = -ΔHvap.   Keywords: thermodynamics, heat, work, isothermal, reversible

Author(s):  
Robert H. Swendsen

This chapter begins by defining terms critical to understanding thermodynamics: reversible, irreversible, and quasi-static. Because heat engines are central to thermodynamic principles, they are described in detail, along with their operation as refrigerators and heat pumps. Various expressions of efficiency for such engines lead to alternative expressions of the second law of thermodynamics. A Carnot cycle is discussed in detail as an example of an idealized heat engine with optimum efficiency. A special case, called negative temperatures, where temperatures actually exceed infinity, provides further insights. In this chapter we will discuss thermodynamic processes, which concern the consequences of thermodynamics for things that happen in the real world.


2019 ◽  
Vol 26 (04) ◽  
pp. 1950022
Author(s):  
César A. Rodríguez-Rosario ◽  
Thomas Frauenheim ◽  
Alán Aspuru-Guzik

Here we demonstrate how the interplay between quantum coherences and a decoherence bath, such as one given by continuos quantum measurements, lead to new kinds of thermodynamic potentials and flows. We show how a mathematical extension of thermodynamics includes decoherence baths leading to a more general sense of the zeroth and first law. We also show how decoherence adds contributions to the change in entropy production in the second law. We derive a thermodynamic potential that depends only on the interplay between quantum coherences and a decoherence thermodynamic bath. This leads to novel thermodynamic effects, such as Onsager relationships that depend on quantum coherences. This provides a thermodynamics interpretation of the role of decoherence on quantum transport in very general systems.


2018 ◽  
Vol 127 ◽  
pp. 1347-1350 ◽  
Author(s):  
Xiao-Juan Wang ◽  
Ya-Ling He ◽  
Zhong-Dong Wang ◽  
Wen-Quan Tao

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 557
Author(s):  
Yirui Zhang ◽  
Konrad Giżyński ◽  
Anna Maciołek ◽  
Robert Hołyst

We study a quantity T defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium U 0 , Δ U = U − U 0 divided by the heat flow J U going out of the system. A recent study suggests that T is minimized in steady states (Phys.Rev.E.99, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine T with and without constraints and find that T is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows U = U 0 ∗ f ( J U ) . In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.


Author(s):  
Mohammad O. Hamdan

An analytical model and a thermodynamics study of the steady airflow inside a solar chimney are performed in this paper. A simplified Bernoulli equation combined with fluid dynamics and ideal gas equation are modeled and solved using EES solver to predict the performance of a solar chimney power plant. The analytical model is validated against an experimental and numerical data available in the literature. The developed analytical model is used to evaluate the effect of geometric parameters on the solar plant power generation. The analysis is showing that the height and diameter of the tower are the most important physical variables for the solar chimney design. The collector area has minimal effect on second-law efficiency but strong effect on harvested energy. The second law efficiency has non-monotonic relation with the turbine head.


Sign in / Sign up

Export Citation Format

Share Document