scholarly journals Molecular Imprinted of Nylon 6 for Selective Separation of Procaine by Solid-Phase Extraction

2021 ◽  
Vol 21 (6) ◽  
pp. 1505
Author(s):  
Muhammed Emad Abood ◽  
Sumayha Muhammed Abbas

The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more than 82%. Separation efficiency and excellent selectivity for procaine were ensured using a mixed solution injected into an HPLC technique consisting of a C18 column with a mobile phase mixture of water-acetonitrile (75:25) at pH 3.3. The study of drug control using an imprinted polymer with procaine compound showed that the complete drug release process is faster at pH1 in a maximum period of 80 min. The proposed method was successfully applied on some of the available pharmaceuticals, and it showed high selectivity for the separation of PRO, RE % was < 1.18, and RSD was less than 0.447.

2020 ◽  
Vol 20 (4) ◽  
pp. 385-404
Author(s):  
Jinlan DAI ◽  
Honglei YIN ◽  
Hang WEI ◽  
Lei ZHOU ◽  
Minghua LIU

Considering the high content of oil and complex residual additives in leather samples, a new analytical method based on the solid-phase extraction technique and gas chromatography-selected ion monitoring mass spectrometry (GC-SIM-MS) was developed to determine 24 organic compounds involving the organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and pyrethroids pesticides residues in leather. The extraction conditions (such as the extraction solution, purification procedure and solid-phase extraction column) were optimized using the positive leather samples based on the recovery rates of the pesticides. The best extraction solution, solid-phase extraction column and chromatography column were n-hexane and ethyl acetate (1+1, volume) mixed solution, Carb-PSA (1.0 g, 6mL) and DB-1701 (length: 30 m, inside diameter: 0.25 mm, film thickness: 0.25 μm). The optimized extraction time and temperature were 20 min and 25°C, respectively. The detection limits of 24 pesticide residues range from 0.05 to 0.10 mg/kg, and the recoveries range from 74% to 116%. The relative standard deviations (RSD, n=6) range from 5.42% to 12.00%. The developed method presented a simple, rapid, sensitive, and inexpensive method to detect 24 pesticides in skin and leather and was successfully applied to the detect them in leather products (cowhide, sheep leather and pig leather).


2011 ◽  
Vol 173 (3-4) ◽  
pp. 423-431 ◽  
Author(s):  
Zhiqiang Cheng ◽  
Hongqing Wang ◽  
Yuyuan Wang ◽  
Fangfang He ◽  
Haisheng Zhang ◽  
...  

2011 ◽  
Vol 89 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Ke-Jing Huang ◽  
Cong-Hui Han ◽  
Ying-Ying Wu ◽  
Chao-Qun Han ◽  
De-Jun Niu ◽  
...  

A simple and efficient solid-phase extraction – spectrofluorimetric method has been developed to determine glutathione (GSH). Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was used as the derivatization reagent. The procedure was based on a BODIPY Fl-C1-IA selective reaction with GSH to form the highly fluorescent product BODIPY Fl-C1-IA–GSH, using a solid-phase extraction column and spectrofluorimetric determination. The variables affecting analytical performance were studied and optimized. The calibration graph using the preconcentration system for GSH was linear over the range of 1–200 nmol/L with a limit of detection of 0.05 nmol/L (signal-to-noise ratio = 3). The relative standard deviation for six replicate determinations of GSH at the 100 nmol/L concentration level was 3.9%. The method was applied to water samples and average recoveries between 87.5% and 111.5% were obtained for spiked samples.


Author(s):  
Yutaka Gomita ◽  
Katsushi Furuno ◽  
Kohei Eto ◽  
Tamotsu Fukuda ◽  
Yasunori Araki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document