scholarly journals REDUCTION OF TUMOR NECROSIS FACTOR-ALPHA AND INTERFERON-GAMMA CONCENTRATION ON TUBERCULOSIS WITH DIABETES MELLITUS AS A MARKER IN DECREASE IMMUNE SYSTEM

Author(s):  
NELLY MARISSA ◽  
NUR RAMADHAN ◽  
SARI HANUM ◽  
MARLINDA ◽  
EKA FITRIA ◽  
...  

Objective: This study aimed to determine the decreased immune response of tuberculosis (TB) with diabetes mellitus (DM) patients. Methods: A total of 105 TB patients who were undergoing treatment at health centers and hospitals in Banda Aceh and Aceh Besar were included in this study. Data collection was carried out by interviewed to obtained demographic and respondent categories based on the diagnosis. Measurements of height and weight were also conducted to obtain body mass index data. 5 mL peripheral blood was taken from each respondent group into a TB with DM (TB+DM) and TB without DM (TB-DM). The blood tested usage tumor necrosis factor-alpha (TNF-α) level using enzyme-linked immunosorbent assay and interferon-gamma (IFN-γ) using IFN-γ release assay. Results: The average concentration of both TNF-α and IFN-γ was higher in TB-DM group (TNF-a 5.2 pg/mL; IFN-g 1.5 IU/mL) than in TB+DM group (TNF-a 2.06 pg/mL; IFN-g 2.86 IU/mL). There were significant differences in TNF-α between the two groups but no significant differences in IFN-γ protein concentration. Conclusion: The immune response of TB patients with DM symptoms was markedly reduced by the decreased expression of TNF-α and IFN-γ.

2011 ◽  
Vol 44 (13) ◽  
pp. S298
Author(s):  
Faryabi Mohamad Reza ◽  
Kamali-Sarvestani Eskandar ◽  
Namian Ali-Mohammad ◽  
Shahbaz Shima ◽  
Salmanpoor Rahmatolah

2001 ◽  
Vol 69 (5) ◽  
pp. 2847-2852 ◽  
Author(s):  
Julia Y. Lee ◽  
Kathleen E. Sullivan

ABSTRACT Lipopolysaccharide (LPS) is a very potent inducer of tumor necrosis factor alpha (TNF-α) expression from monocytes and macrophages. Another inflammatory cytokine, gamma interferon (IFN-γ), can potentiate the effects of LPS, but the mechanism is not thoroughly understood. Previous reports emphasized the ability of IFN-γ to upregulate CD14 expression (the receptor for LPS), and nearly all studies have utilized sequential stimulation with IFN-γ followed by LPS to exploit this phenomenon. This study demonstrates that IFN-γ can upregulate the effect of LPS at the level of transcription. Human monoblastic Mono-Mac-6 cells produced up to threefold-greater levels of TNF-α when simultaneously stimulated with LPS and IFN-γ compared to treatment with LPS alone. RNase protection studies showed a similar increase in RNA beginning as early as within 30 min. The synthesis of TNF-α mRNA in IFN-γ- and LPS-treated Mono-Mac-6 cells was also temporally prolonged even though the message turnover rate was identical to that seen in LPS stimulated cells. The modulatory effect of IFN-γ may be mediated by Jak2.


2005 ◽  
Vol 73 (2) ◽  
pp. 849-858 ◽  
Author(s):  
Simone Korten ◽  
Richard J. Anderson ◽  
Carolyn M. Hannan ◽  
Eric G. Sheu ◽  
Robert Sinden ◽  
...  

ABSTRACT Understanding the protective mechanism in the liver induced by recombinant vaccines against the pre-erythrocytic stages of malaria is important for vaccine development. Most studies in mice have focused on splenic and peripheral blood T cells and identified gamma interferon (IFN-γ)-producing CD8+ T cells as correlates of protection, which can be induced by prime-boost vaccination with recombinant poxviruses. Invariant natural killer T (Vα14iNKT) cells can also protect against liver stage malaria, when activated, and are abundant in the liver. Since poxviruses have nonspecific immunomodulating effects, which are incompletely understood, we investigated whether recombinant poxviruses affect the protective properties of hepatic Vα14iNKT cells and thus vaccine efficacy. We show that intradermal vaccination with recombinant poxviruses activated Vα14iNKT cells and NK cells in the livers of BALB/c mice while inducing IFN-γ- and tumor necrosis factor alpha (TNF-α)-producing pre-erythrocytic stage antigen-specific CD8+ T cells. Greater numbers of hepatic Vα14iNKT cells secreted interleukin-4 than IFN-γ. Vaccinated Vα14iNKT-cell-deficient mice had lower, but still protective levels of hepatic and splenic IFN-γ+ and TNF-α+ CD8+ T cells and better protection rates later after challenge with Plasmodium berghei sporozoites. Therefore, vaccine-activated hepatic Vα14iNKT cells help in generating specific T cells but are not required for protection induced by recombinant poxviruses. Furthermore, double-positive INF-γ+/TNF-α+ CD8+ T cells were enriched in protected livers, suggesting that cells expressing both of these cytokines may be most relevant for protection.


2005 ◽  
Vol 73 (4) ◽  
pp. 2175-2183 ◽  
Author(s):  
Anton Pernthaner ◽  
Sally-Ann Cole ◽  
Lilian Morrison ◽  
Wayne R. Hein

ABSTRACT Cytokine gene expression in cells migrating in afferent and efferent intestinal lymph was monitored for extended time periods in individual sheep experimentally infected with the nematode Trichostrongylus colubriformis. Animals from stable selection lines with increased levels of either genetic resistance (R) or susceptibility (S) to nematode infection were used. Genes for interleukin-5 (IL-5), IL-13, and tumor necrosis factor alpha (TNF-α), but not for IL-4, IL-10, or gamma interferon (IFN-γ), were consistently expressed at higher levels in both afferent and efferent lymph cells of R sheep than in S sheep. However, only minor differences were observed in the surface phenotypes and antigenic and mitogenic responsiveness of cells in intestinal lymph between animals from the two selection lines. The IL-4 and IL-10 genes were expressed at higher levels in afferent lymph cells than in efferent lymph cells throughout the course of the nematode infection in animals of both genotypes, while the proinflammatory TNF-α gene was relatively highly expressed in both lymph types. These relationships notwithstanding, expression of the IL-10 and TNF-α genes declined significantly in afferent lymph cells but not in efferent lymph cells during infection. Collectively, the results showed that R-line sheep developed a strong polarization toward a Th2-type cytokine profile in immune cells migrating in lymph from sites where the immune response to nematodes was initiated, although the IFN-γ gene was also expressed at moderate levels. Genes or alleles that predispose an animal to develop this type of response appear to have segregated with the R selection line and may contribute to the increased resistance of these animals.


2019 ◽  
Vol 9 (4) ◽  
pp. 619-623
Author(s):  
Wira Eka Putra ◽  
Muhaimin Rifa'i

Purpose: Accumulating evidence shows the genus of Sambucus exerts a broad spectrum ofmedicinal potencies such as anticancer, antiviral, antibacterial, and antidiabetes. Based on theprevious studies, we hypothesized that bioactive compounds of Sambucus might alter severalbiological systems, including the immune system. Therefore, this study extensively aimed toevaluate the immunomodulatory activities of Sambucus javanica extracts in 7,12-dimethylbenz[a]anthracene (DMBA)-treated BALB/c mouse.Methods: The experimental mice were orally administrated with 2.8 mg.kg-1 BW of DMBA forten times within a month. After that, the mice were treated by S. javanica berries and leavesextracts for 2 weeks. Subsequently, the inflammation rate was evaluated by using flow cytometryanalysis, whereas the necrosis incidences were observed by hematoxylin & eosin staining.Results: Based on the results, we found the expression of tumor necrosis factor alpha (TNF-α)and interferon gamma (IFN-ɣ) were increased however after treated by S. javanica berries andleaves extracts were significantly decreased. In the same way, necrosis incidence was increasedin the DMBA-treated group however it was diminished with S. javanica extracts treatment.Conclusion: Together, these results suggested that S. javanica extracts have immunomodulatoryactivities to suppress inflammation and reduce necrosis incidence in experimental mice.<br />


2003 ◽  
Vol 10 (1) ◽  
pp. 44-52 ◽  
Author(s):  
John A. Christopherson ◽  
Erik L. Munson ◽  
Douglas M. England ◽  
Cindy L. Croke ◽  
Monica C. Remington ◽  
...  

ABSTRACT We found that Borrelia burgdorferi-vaccinated gamma interferon-deficient (IFN-γ0) mice challenged with B. burgdorferi developed prominent chronic destructive osteoarthropathy. When these mice were treated with anti-tumor necrosis factor alpha (TNF-α) antibody, the severity of the destructive osteoarthritis was enhanced and affected the mobility of the animals. In addition, extensive swelling of the hind paws occurred. In contrast, treatment of B. burgdorferi-vaccinated, challenged IFN-γ0 mice with recombinant TNF-α (rTNF-α) inhibited the development of arthritis, including swelling of the hind paws. Moreover, treatment of vaccinated, challenged IFN-γ0 mice with anti-TNF-α inhibited fourfold the production of an antibody that kills B. burgdorferi, while treatment of vaccinated, challenged IFN-γ0 mice with rTNF-α slightly elevated the level of the borreliacidal antibody. These results suggest that the level of TNF-α directly or indirectly regulates the production of borreliacidal antibody and the development of vaccine-induced destructive Lyme osteoarthritis. Studies are in progress to determine the mechanism by which TNF-α-dependent cytokines generate the destructive arthritis.


2002 ◽  
Vol 70 (6) ◽  
pp. 2959-2964 ◽  
Author(s):  
Amy C. Herring ◽  
John Lee ◽  
Roderick A. McDonald ◽  
Galen B. Toews ◽  
Gary B. Huffnagle

ABSTRACT The development of T1-cell-mediated immunity is required to clear a pulmonary Cryptococcus neoformans infection. The objective of these studies was to determine the mechanism by which tumor necrosis factor alpha (TNF-α) augments the development of pulmonary T1 immunity to C. neoformans infection. TNF-α expression was detected in lavage sample cells at days 2, 3, and 7 following C. neoformans infection. The numbers of CFU in the lung were not different between control and anti-TNF-α-treated mice at any time point examined during the afferent phase of the response (days 0 to 7). However, neutralization of TNF-α prevented the initiation of pulmonary clearance during the efferent phase of the response (day 14). Administration of anti-TNF-α monoclonal antibody (day 0) diminished the lung levels of TNF-α, interleukin-12 (IL-12), and gamma interferon (IFN-γ) induced by C. neoformans at day 7 postinfection. Neutralization of TNF-α (day 0) also altered the IFN-γ/IL-4 ratio in the lung-associated lymph nodes at day 7 following C. neoformans infection. Anti-TNF-α-treated mice developed a pulmonary eosinophilia at day 14 postinfection. Consistent with the pulmonary eosinophilia, anti-TNF-α-treated mice exhibited elevated serum immunoglobulin E and inhibition of the anticryptococcal delayed-type hypersensitivity response, indicating a shift toward a T2 response. Neutralization of IL-12 also prevented lung leukocyte production of IFN-γ in response to the infection. These findings demonstrate that afferent-phase TNF-α production is essential for the induction of IL-12 and IFN-γ and neutralization of early TNF-α results in a T2 shift of the T1/T2 balance of antifungal immunity.


Sign in / Sign up

Export Citation Format

Share Document