APPLICATION OF NEAR INFRARED SPECTROSCOPY FOR ENDPOINT DETERMINATION OF BLENDING AND INFLUENCE OF LOADING ORDER

Author(s):  
PATTEERA SODATA ◽  
JOMJAI PEERAPATTANA

Objective: This study aimed to apply near-infrared spectroscopy along with a thief as a tool to determine the endpoint of the blending process. Methods: The calibration model was constructed by partial least square regression. The best model was applied to determine the endpoint of the blending process, also the effect of loading order on the endpoint for the blending of the formulation containing a low concentration of the active pharmaceutical ingredient. Results: The best partial least square regression model yielded the lowest root mean square error of calibration of 1.4004, the lowest root mean square error of prediction of 1.4108 and the highest correlation coefficient of 0.9921. Validation study revealed the reference values were not statistically different from those of the predicted values. The model could predict the endpoint of the blending process with acceptable precision and accuracy. Standard deviation of the content of active pharmaceutical ingredients was ≤ 3% of the target after eighteen minutes of the blending process, which indicated the uniformity of powder blends. Additionally, the model revealed the order of powder loading slightly affected the blending time. The protocol that loaded the active pharmaceutical ingredient first or last needed a longer time to achieve the uniformity of blend. Conclusion: NIR spectroscopy is the rapid and effective tools that could be applied to study the blending process in the pharmaceutical manufacturing.

2005 ◽  
Vol 13 (3) ◽  
pp. 147-154 ◽  
Author(s):  
Wolfgang Becker ◽  
Norbert Eisenreich

Near infrared spectroscopy was used as an in-line control system for the measurement of polypropylene filled with different amounts of Irganox additives. For this purpose transmission probes were installed in an extruder. The probes can withstand temperatures up to 300°C and pressures up to 60 MPa. Transmission spectra of polypropylene mixed with an Irganox additive were recorded. PCA score plot was carried out revealing the influence of varying conditions for the mixing of the sample preparation. Prediction models were generated with partial least square regression which resulted in a model which estimated Irganox with a coefficient of detremination of 0.984 and a root mean square error of prediction of 0.098%. Furthermore the possibilities for controlling process conditions by measuring transmission at a specific wavelength were shown.


2019 ◽  
Author(s):  
Nur Tsalits Fahman Mughni

Rose Guava (Syzygium jambos (L.) Alston) is known to have flavonoid compounds. Where flavonoids are natural product compounds that have uses as a treatment. An alternative method used to determine the prediction of total flavonoid levels is a combination of FTIR and Chemometrics (Partial least square regression) through the parameter RMSEC value (Root mean square error of calibration), RMSECV (Root mean square error of validation), PRESS (Predicted residual error sum of squares) and R2. The results of the combination of FTIR and CEMOMETRICS (Partial least square regression) on the prediction of total flavonoid levels can provide a good model with calibration obtained R2 value0.9999, RMSEC 0.0000637 and the results of vaid obtained PRESS value0.19225, R2 0.978 and RMSECV 0.041 . Based on the literature, the model can be said to be good if the RMSEC and RMSECV values are smaller than R2.


2020 ◽  
Vol 28 (3) ◽  
pp. 153-162
Author(s):  
Lijun Wu ◽  
Baoxing Wang ◽  
Lei Zhang ◽  
Rumin Duan ◽  
Rui Gao ◽  
...  

Near infrared spectroscopy coupled with sample set partitioning based on joint X-Y distances combined with partial least square regression was applied to the quantitative analysis of six routine chemicals, five physical indices and four macromolecular substances in reconstituted tobacco. The quantitative regression models of these indices were established by joint X-Y distances combined with partial least square regression. Results showed remarkable correlation between predicted and measured values of the 15 indices. The root mean square error of prediction of all the indices was low, and the correlation coefficients of these PLS models were all greater than 0.85. This was the first study in which NIR spectroscopy had been used to determine the macromolecular substances as well as certain physical indices in reconstituted tobacco. Results showed that this method could be feasibly applied for rapid detection of these properties of industrial products.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


Author(s):  
Anggita Rosiana Putri ◽  
Abdul Rohman ◽  
Sugeng Riyanto ◽  
Widiastuti Setyaningsih

Authentication of Patin fish oil (MIP) is essential to prevent adulteration practice, to ensure quality, nutritional value, and product safety. The purpose of this study is to apply the FTIR spectroscopy combined with chemometrics for MIP authentication. The chemometrics method consists of principal component regression (PCR) and partial least square regression (PLSR). PCR and PLSR were used for multivariate calibration, while for grouping the samples using discriminant analysis (DA) method. In this study, corn oil (MJ) was used as an adulterate. Twenty-one mixed samples of MIP and MJ were prepared with the adulterate concentration range of 0-50%. The best authentication model was obtained using the PLSR technique using the first derivative of FTIR spectra at a wavelength of 650-3432 cm-1. The coefficient of determination (R2) for calibration and validation was obtained 0.9995 and 1.0000, respectively. The value of root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.397 and 0.189. This study found that the DA method can group the samples with an accuracy of 99.92%.


2021 ◽  
Author(s):  
Silvana Nisgoski ◽  
Thaís A P Gonçalves ◽  
Júlia Sonsin-Oliveira ◽  
Adriano W Ballarin ◽  
Graciela I B Muñiz

Abstract The illegal charcoal trade is an internationally well-known forest crime. In Brazil, government agents try to control it using the document of forest origin (DOF). To confirm a load’s legality, the agents must compare it with the declared content of the DOF. However, to identify charcoal is difficult even for specialists in wood anatomy. Hence, new technologies would facilitate the agents’ work. Near-infrared spectroscopy (NIR) provides a rapid and precise response to differentiate carbonized species. Considering the rich Brazilian flora, NIR studies are still underdeveloped. Our work aimed to differentiate charcoals of seven eucalypts and 10 Cerrado species based on NIR analysis and to add information to a charcoal database. Data were collected with a spectrophotometer in reflectance mode. Partial least square regression with discriminant analysis (PLS-DA) and a linear discriminant analysis (LDA) was applied to confirm the performance and potential of NIR spectra to distinguish native Cerrado species from eucalyptus species. Wavenumbers from 4,000 to 6,000 cm−1 and transversal surface presented the best results. NIR had the potential to distinguish eucalypt charcoals from Cerrado species and in comparison to reference samples. NIR is a potential tool for forestry supervision to guarantee the sustainability of the charcoal supply in Brazil and countries with similar conditions. Study Implications It is a challenge to protect the Cerrado biome against deforestation for charcoal production. The application of new technologies such as near-infrared spectroscopy (NIR) for charcoal identification might improve the work of government agents. In this article, we studied the spectra of Cerrado and eucalypt species. Our results present good separation between the analyzed groups. The main goal is to develop a reliable NIR database that would be useful in the practical work of agents. The database will be available for all control agencies, and future training will be done for a rapid initial evaluation in the field.


Sign in / Sign up

Export Citation Format

Share Document