scholarly journals PRELIMINARY STUDY OF INSULIN DRY POWDER FORMULATION: CRITICAL PROCESS PARAMETERS ON SPRAY-FREEZE-DRYING AND CRITICAL MATERIAL ATTRIBUTE OF TREHALOSE AND INULIN AS STABILIZER

Author(s):  
CYNTHIA MARISCA MUNTU ◽  
SILVIA SURINI ◽  
CHRISTINA AVANTI ◽  
HAYUN ◽  
WOUTER HINRICHS

Objective: The aim of this study was to obtain recommendations about critical process parameters (CPP) and optimal ratio of trehalose and inulin as critical material attribute (CMA) on insulin dry powder formulation with spray-freeze-drying (SFD) method. Methods: Inulin dry powder was formulated with the SFD method, which consisted of an atomization process and freeze-drying (FD). SFD processes were optimized in order to obtain dry powder and CPP was analyzed. All seven variations of formulas proceeded with physicochemical characterization to obtain the optimal formula. Results: In the early optimization, there was a slight time lag between the atomization process and FD; as a result, some of the powder coagulated and crystallized. Another critical parameter was that the FD process should not be interrupted for at least 50 h of FD. Dry powder proceeded with physicochemical characterization, a formula without inulin showed semicrystalline properties, while six formulas had amorphous properties due to its combination. All formulas had a spherulite shape and rough surface. Five formulas with the combination of trehalose and inulin obtained dry powders with a diameter range of 30-43 μm, moisture content below 3.5% and high encapsulation efficiency (EE). Formula with the ratio of 1:1 (F4) showed optimal properties with moisture content and EE of 2.62% and 99.68%, respectively. Conclusion: This study concluded that there were two critical process parameters in the SFD method. There should be no time lag in SFD process and FD time which should not be interrupted. The optimal ratio for trehalose and inulin was shown by F4 with ratio of 1:1.

2017 ◽  
Vol 43 (4) ◽  
pp. 637-651 ◽  
Author(s):  
Gladys Rosario Ramos Yacasi ◽  
Ana Cristina Calpena Campmany ◽  
María Antonia Egea Gras ◽  
Marta Espina García ◽  
María Luisa García López

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Changjiao Gan ◽  
Wenbo Luo ◽  
Yunzhou Yu ◽  
Zhouguang Jiao ◽  
Sha Li ◽  
...  

AbstractBotulinum neurotoxin (BoNT), produced by Clostridium botulinum, is generally known to be the most poisonous of all biological toxins. In this study, we evaluate the protection conferred by intratracheal (i.t.) inoculation immunization with recombinant Hc subunit (AHc) vaccines against aerosolized BoNT/A intoxication. Three AHc vaccine formulations, i.e., conventional liquid, dry powder produced by spray freeze drying, and AHc dry powder reconstituted in water are prepared, and mice are immunized via i.t. inoculation or subcutaneous (s.c.) injection. Compared with s.c.-AHc-immunized mice, i.t.-AHc-immunized mice exhibit a slightly stronger protection against a challenge with 30,000× LD50 aerosolized BoNT/A. Of note, only i.t.-AHc induces a significantly higher level of toxin-neutralizing mucosal secretory IgA (SIgA) production in the bronchoalveolar lavage of mice. In conclusion, our study demonstrates that the immune protection conferred by the three formulations of AHc is comparable, while i.t. immunization of AHc is superior to s.c. immunization against aerosolized BoNT/A intoxication.


2020 ◽  
Author(s):  
Maria Mendes ◽  
João Basso ◽  
João Sousa ◽  
Alberto Pais ◽  
Carla Vitorino

2019 ◽  
Vol 18 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Sayani Bhattacharyya ◽  
Bharani S Sogali

In the present study custom screening design was employed to observe the effect of four critical process parameters on particle size and polydispersity index of the liposomal formulation made by ethanol injection method. The four process parameters selected were lipid ratio, rate of injection, phase volume ratio and rotational speed of magnetic stirring. Eight different liposomal formulations were prepared using the design. The formulations were subjected to particle size analysis. The analysis was done at a significance level p<0.05 and found that the process parameters had significant effect on the particle size and polydispersity index of the formulations. The design was optimized for the individual responses with an overall desirability of more than 50%. Three batches of liposomes were formulated at optimized process parameters which matched the target as predicted by the design. Therefore, it can be concluded that the design was effective in production of nano sized stable monodisperse liposomes by ethanol injection method. Dhaka Univ. J. Pharm. Sci. 18(1): 103-111, 2019 (June)


Author(s):  
Tanja A. Grein ◽  
Daniel Loewe ◽  
Hauke Dieken ◽  
Tobias Weidner ◽  
Denise Salzig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document