scholarly journals STABILITY INDICATING HPLC METHOD FOR DETERMINATION OF VILAZODONE HYDROCHLORIDE

Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 

2013 ◽  
Vol 781-784 ◽  
pp. 68-71 ◽  
Author(s):  
Fang Tan

A reversed phase HPLC method was developed and validated for analysis of roflumilast, its related substances and degradation products, using Ecosil C18 column (250×4.6 mm, 5 μm) with a flow rate of 1.0 ml/min and detection wavelength of 215nm. The mobile phase was a mixture of acetonitrile and 0.005mol·L-1ammonium dihydrogen phosphate buffer pH 3.5 in the ratio of 48:52 (v/v). The samples were analyzed using 20 μl injection volume and the column temperature was maintained at 30°C. The limit of detection and limit of quantitation were found to be 2.6 ng/ml and 8ng/ml, respectively. The stability-indicating capability of method was established by forced degradation studies and method demonstrated successful separation of drug, its related substances and degradation products. The method is sensitive, specific, accurate, precise and stability indicating for the quantitation of drug, its related substances and other degradation compounds.


Author(s):  
Murlidhar V. Zope ◽  
Rahul M. Patel ◽  
Ashwinikumari Patel ◽  
Samir G. Patel

Objective: The objective of the current study was to develop and validate a simple, robust, precise and accurate RP-HPLC (reverse phase-high performance liquid chromatography) method for the quantitative determination of potential degradation products of Difluprednate (DIFL) in the ophthalmic emulsion.Methods: Chromatographic separation was achieved on the YMC pack ODS-AQ (150× 4.6) mm, 3μm column with a mobile phase containing a gradient mixture of mobile phase A (0.02M Ammonium formate buffer pH 4.5 adjusted with formic acid) and Acetonitrile as mobile phase B, at flow rate of 1.5 ml/min and with UV detection at 240 nm.Results: The peak retention time of DIFL was found at about 17.2 min, the RRT of degradation product-1 (DP-1), degradation product-2 (DP-2), and degradation product-3 (DP-3), were found to be about 0.49, 0.65 and 0.79 respectively (calculated with respect to Difluprednate). Stress testing was performed in accordance with an ICH (international council for harmonisation) guideline Q1A (R2) [1]. The method was validated as per ICH guideline Q2 (R1)[2]. The calibration curve was found to be linear in the concentration range of 0.1 to 0.75 µg/ml for Difluprednate, DP-1, DP-2 and DP-3. The LOD (Limit of detection) was found to be 0.1µg/ml and LOQ (Limit of quantification) of 0.15µg/ml for Difluprednate, DP-1, DP-2 and DP-3 respectively. The recovery from LOQ to 150% was within 90-110%. The forced degradation data confirms the stability indicating the nature of the method.Conclusion: A simple, robust, precise and accurate RP-HPLC method for the quantitative determination of potential degradation products of Difluprednate in the ophthalmic emulsion was developed and validated. 


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramakrishna Kommana ◽  
Praveen Basappa

The present paper describes the development of quick stability indicating RP-HPLC method for the simultaneous estimation of codeine phosphate and chlorpheniramine maleate in the presence of its degradation products, generated from forced degradation studies. The developed method separates codeine phosphate and chlorpheniramine maleate in impurities/degradation products. Codeine phosphate and chlorpheniramine maleate and their combination drug product were exposed to acid, base, oxidation, dry heat, and photolytic stress conditions, and the stressed samples were analysed by proposed method. The proposed HPLC method utilizes the Shimadzu HPLC system on a Phenomenex C18 column (, 5 μ) using a mixture of 1% o-phosphoric acid in water : acetonitrile : methanol (78 : 10 : 12) mobile phase with pH adjusted to 3.0 in an isocratic elution mode at a flow rate of 1 mL/min, at 23°C with a load of 20 μL. The detection was carried out at 254 nm. The retention time of codeine phosphate and chlorpheniramine maleate was found to be around 3.47 min and 9.45 min, respectively. The method has been validated with respect to linearity, robustness, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ). The developed validated stability indicating HPLC method was found to be simple, accurate, and reproducible for the determination of instability of these drugs in bulk and commercial products.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fahimeh Sadeghi ◽  
Latifeh Navidpour ◽  
Sima Bayat ◽  
Minoo Afshar

A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r2=0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations.


2020 ◽  
Vol 11 (02) ◽  
pp. 219-223
Author(s):  
Ansari Yaasir Ahmed ◽  
Qazi Shoeb ◽  
Umme Rumana ◽  
Patel Afroza ◽  
Pathan Vahid Tajkhan ◽  
...  

The new stability-indicating high performance liquid chromatography (HPLC) method has been developed and validated with different parameters for atenolol (ATE) and nifedipine (NIFE) in the combined dosage form. The chromatographic conditions were optimized using a mobile phase of MeOH:OPA (70:30) with a flow rate of 0.7 mL/min. Column (C18) of 4.6 × 250 mm dimension was used as a stationary phase; the particle size capacity of the column was 5 μm. The detection was carried out at 233 nm. The method was validated according to ICH guidelines for linearity, precision, repeatability, the limit of detection (LoD), and limit of quantitation (LoQ). The response was found to be linear in the concentration range of 20 to 100 mcg/mL for ATE and 1 to 5 mcg/mL for NIFE. The developed method shows the minimum quantity of drugs to be identified (LoD) and minimum drug to be quantified (LoQ). The LoD and LoQ were found to be 0.1415 and 0.4289, respectively, for ATE, and 0.1834 and 0.5558, respectively, for NIFE. The method was linear, simple, precise, and accurate and, therefore, suitable for routine analysis of drugs in tablet form. The forced degradation studies were also done through the exposure of analyte solution to four different stress conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Minoo Afshar ◽  
Niloufar Salkhordeh ◽  
Mehdi Rajabi

A green, simple, and stability-indicating RP-HPLC method was developed for simultaneous determination of permethrin isomers in pharmaceutical preparations. The separation was based on a C18analytical column (150 × 4.6 mm, i.d., 5 μm). The mobile phase consisted of ethanol: phosphoric acid solution (pH = 3) (67 : 33, v/v). The elution was carried out at 30°C temperature with a flow rate of 1.0 mL/min. Quantitation was achieved with UV detection at 215 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in permethrin concentration range of 0.5–50 μg/mL with correlation coefficients of 0.9996 for each isomer. Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.24%–100.72%) ensured the accuracy of the developed method. The peaks of permethrin isomers well resolved from various degradation products as well as the pharmaceutical excipients. Accordingly, the proposed validated and sustainable procedure was proved to be proper for routine analyzing and stability studies of permethrin in pharmaceutical preparations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kiran Singh Sharma ◽  
Jagannath Sahoo

Abstract Background Most of the analytical methods reported for the estimation of Orlistat were complex, expensive, and deficient in reproducibility with no or very less informative regarding various statistical methods and equations used for the validation purpose. This study provides a fast, accurate, descriptive, and precise isocratic reversed phase high-performance liquid chromatographic (HPLC) method using Waters Spherisorb 5 μm Octadecyl-silica-2 (250 × 4.6 mm) column, for the estimation of Orlistat in bulk drug and pharmaceutical formulations with minimized drug extraction steps. The drug was detected in an analytical column with mobile phase comprising a mixture of methanol, acetonitrile, and 2% phosphoric acid in the ratio of 85:14:1 v/v/v at flow rate of 1 ml/min with elution monitoring at 215.0 nm. Results The retention time for Orlistat was found to be 5.9 min with sharp and proper peak. The linearity was covered over the concentration range of 1.00–10.00 μg/ml (r2 = 0.9997) with a limit of detection and limit of quantitation 0.06 and 0.2 μg/ml, respectively. The developed analytical technique was found to be validated for all the parameters within the acceptance criteria of ICH guidelines. The mean ± standard deviation (SD) recoveries of Orlistat were 99.87 ± 0.45. Conclusion The optimized method was well precise, accurate, sensitive, stability indicating, and tested with all statistical parameters. Thus, the method can be conveniently used in quality control and routine analysis of Orlistat containing solid dispersions and other formulations. The main advantage of the developed method was its high specificity for the estimation of Orlistat in presence of various degradation products resulting from stress conditions and formulation excipients.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Leena A. Al-Hawash ◽  
Ashok K. Shakya ◽  
Maher L. Saleem

A rapid, simple, accurate, precise, economical, robust, and stability indicating reverse phase HPLC-PDA procedure has been developed and validated for the determination of trandolapril. The trandolapril was separated isocratically on Hypersil-Gold C18 column (250 mm × 4.6 mm, 5 μm) with a mobile phase consisting of 50% acetonitrile and 50% water (containing 0.025% triethylamine, pH3.0±0.1), at25±2°C. Retention time of the drug was ~4.6 min. The eluted compounds were monitored and identified at 210 nm. The linearity of the method was excellent(r2>0.9999)over the concentration range of 1–24 μg/mL; the limit of detection (LOD) and limit of quantitation (LOQ) were 0.0566 μg/mL and 0.1715 μg/mL, respectively. The overall precision was less than 2%. Mean recovery of trandolapril was more than 99%; no interference was found from the component present in the preparation. Stability studies indicate that the drug was stable to sunlight and UV light. The drug gives 6 different oxidative products on exposure to hydrogen peroxide. Slight degradation was observed in acidic condition. Degradation was higher in the alkaline condition compared to other conditions. The robustness of the method was studied using factorial design experiment.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Soad S. Abd El-Hay ◽  
Mostafa S. Mohram

A simple and robust high-performance liquid chromatography (HPLC) method is described for the assay for levetiracetam (LTC), methyl paraben (MHB), and propyl paraben (PHB) either in their pure form or in commercial Levepsy® syrup. The method is selective and stability indicating and all chromatographic conditions were studied to obtain adequate separation of LTC, MHB, and PHB from their degradation products and from excipients. The HPLC separation was carried out on a RP C18 Hypersil BDS analytical column (150 mm × 4.6 mm ID) using gradient elution system. The mobile phase flow rate was 1.5 mLmin−1 and the column temperature was kept at 40°C. Complete separation of the studied components was obtained within a cycle time of 8 min. LTC, MHB, and PHB were eluted at 1.56, 5.86, and 7.85 min, respectively. Detection was carried out at 240 nm using a dual wavelength detector. The method has been validated for linearity, accuracy, precision, specificity, limit of detection, limit of quantitation, robustness, and ruggedness. The proposed method was successfully applied for the determination of LTC in the presence of parabens in Levepsy syrup.


Sign in / Sign up

Export Citation Format

Share Document