scholarly journals Comparative epigenome-wide analysis highlights placenta-specific differentially methylated regions

Epigenomics ◽  
2021 ◽  
Author(s):  
Marika Groleau ◽  
Frédérique White ◽  
Andres Cardenas ◽  
Patrice Perron ◽  
Marie-France Hivert ◽  
...  

Aim: The placenta undergoes DNA methylation (DNAm) programming that is unique compared with all other fetal tissues. We aim to decipher some of the physiologic roles of the placenta by comparing its DNAm profile with that of another fetal tissue. Materials & methods: We performed a comparative analysis of genome-wide DNAm of 444 placentas paired with cord blood samples collected at birth. Gene ontology term analyses were conducted on the resulting differentially methylated regions. Results: Genomic regions upstream of transcription start sites showing lower DNAm in the placenta were enriched with terms related to miRNA functions and genes encoding G protein-coupled receptors. Conclusion: These results highlight genomic regions that are differentially methylated in the placenta in contrast to fetal blood.

2021 ◽  
Author(s):  
Roman Hillje ◽  
Lucilla Luzi ◽  
Stefano Amatori ◽  
Mirco Fanelli ◽  
Pier Giuseppe Pelicci ◽  
...  

Abstract To disclose the epigenetic drift of time passing, we determined the genome-wide distributions of mono- and tri-methylated lysine 4 and acetylated and tri-methylated lysine 27 of histone H3 in the livers of healthy 3, 6 and 12 months old C57BL/6 mice. The comparison of different age profiles of histone H3 marks revealed global redistribution of histone H3 modifications with time, in particular in intergenic regions and near transcription start sites, as well as altered correlation between the profiles of different histone modifications. Moreover, feeding mice with caloric restriction diet, a treatment known to retard aging, preserved younger state of histone H3 in these genomic regions.


Genomics ◽  
1994 ◽  
Vol 23 (3) ◽  
pp. 609-618 ◽  
Author(s):  
Adriano Marchese ◽  
John M. Docherty ◽  
Tuan Nguyen ◽  
Michael Heiber ◽  
Regina Cheng ◽  
...  

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7526 ◽  
Author(s):  
Alfredo Mendoza-Vargas ◽  
Leticia Olvera ◽  
Maricela Olvera ◽  
Ricardo Grande ◽  
Leticia Vega-Alvarado ◽  
...  

2016 ◽  
Vol 174 (6) ◽  
pp. R239-R247 ◽  
Author(s):  
Frederic Castinetti ◽  
Rachel Reynaud ◽  
Alexandru Saveanu ◽  
Nicolas Jullien ◽  
Marie Helene Quentien ◽  
...  

Over the last 5 years, new actors involved in the pathogenesis of combined pituitary hormone deficiency in humans have been reported: they included a member of the immunoglobulin superfamily glycoprotein and ciliary G protein-coupled receptors, as well as new transcription factors and signalling molecules. New modes of inheritance for alterations of genes encoding transcription factors have also been described. Finally, actors known to be involved in a very specific phenotype (hypogonadotroph hypogonadism for instance) have been identified in a wider range of phenotypes. These data thus suggest that new mechanisms could explain the low rate of aetiological identification in this heterogeneous group of diseases. Taking into account the fact that several reviews have been published in recent years on classical aetiologies of CPHD such as mutations ofPOU1F1orPROP1, we focused the present overview on the data published in the last 5 years, to provide the reader with an updated review on this rapidly evolving field of knowledge.


1995 ◽  
Vol 14 (1) ◽  
pp. 25-35 ◽  
Author(s):  
MICHAEL HEIBER ◽  
JOHN M. DOCHERTY ◽  
GIRISH SHAH ◽  
TUAN NGUYEN ◽  
REGINA CHENG ◽  
...  

2013 ◽  
Vol 288 (38) ◽  
pp. 27434-27443 ◽  
Author(s):  
Sebastien Hannedouche ◽  
Valerie Beck ◽  
Juliet Leighton-Davies ◽  
Martin Beibel ◽  
Guglielmo Roma ◽  
...  

TLQP-21, a peptide derived from VGF (non-acronymic) by proteolytic processing, has been shown to modulate energy metabolism, differentiation, and cellular response to stress. Although extensively investigated, the receptor for this endogenous peptide has not previously been described. This study describes the use of a series of studies that show G protein-coupled receptor-mediated biological activity of TLQP-21 signaling in CHO-K1 cells. Unbiased genome-wide sequencing of the transcriptome from responsive CHO-K1 cells identified a prioritized list of possible G protein-coupled receptors bringing about this activity. Further experiments using a series of defined receptor antagonists and siRNAs led to the identification of complement C3a receptor-1 (C3AR1) as a target for TLQP-21 in rodents. We have not been able to demonstrate so far that this finding is translatable to the human receptor. Our results are in line with a large number of physiological observations in rodent models of food intake and metabolic control, where TLQP-21 shows activity. In addition, the sensitivity of TLQP-21 signaling to pertussis toxin is consistent with the known signaling pathway of C3AR1. The binding of TLQP-21 to C3AR1 not only has effects on signaling but also modulates cellular functions, as TLQP-21 was shown to have a role in directing migration of mouse RAW264.7 cells.


Sign in / Sign up

Export Citation Format

Share Document