Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization

2016 ◽  
Vol 11 (10) ◽  
pp. 1227-1248 ◽  
Author(s):  
Qingqiang Xu ◽  
Mingmei Cao ◽  
Hongyuan Song ◽  
Shenglin Chen ◽  
Xijing Qian ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 630 ◽  
Author(s):  
Jichen Niu ◽  
Ya Jiang ◽  
Hao Xu ◽  
Changjing Zhao ◽  
Guodong Zhou ◽  
...  

Japanese encephalitis virus (JEV) is a mosquito-borne Flavivirus, the leading cause of viral-induced encephalitis. Several host molecules have been identified as the JEV attachment factor; however, the molecules involved in JEV entry remain poorly understood. In the present study, we demonstrate that TIM-1 is important for efficient infection by JEV. Firstly, three TIM-1 variants (V1, V2, and V3) were cloned from A549 cells, and we revealed that only ectopically TIM-1 V2 expression in 293T cells significantly promotes JEV attachment, entry and infection. Point mutation of phosphatidylserine (Ptdser) binding pocket in the TIM-1 IgV domain dampened JEV entry, indicating that TIM-1-mediated JEV infection is Ptdser-dependent. Furthermore, we found the cytoplasmic domain of TIM-1 is also required for enhancing JEV entry. Additionally, knock down of TIM-1 expression in A549 cells impaired JEV entry and infection, but not attachment, suggesting that additional factors exist in A549 cells that allow the virus to bind. In conclusion, our findings demonstrate that TIM-1 promotes JEV infection as an entry cofactor, and the polymorphism of TIM-1 is associated with JEV susceptibility to host cells.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Xuchen Zheng ◽  
Hao Zheng ◽  
Wu Tong ◽  
Guoxin Li ◽  
Tao Wang ◽  
...  

ABSTRACT The Japanese encephalitis virus (JEV) envelope (E) protein, as one of mediators of virus entry into host cells, plays a critical role in determining virulence. The Glu-to-Lys mutation of residue 138 in E protein (E138) plays an important role in attenuating JEV vaccine strain SA14-14-2. However, it is not clear how E138 attenuates JEV. Here, we demonstrate that the Glu-to-Arg mutation of E138 also determines the attenuation of JEV strain 10S3. Likewise, for its parent strain (HEN0701), a virulence strain, the mutations of E138 are responsible for virulence alteration. Furthermore, we demonstrated that mutations of alkaline residues in E138 contributed to the attenuation of neurovirulence; in contrast, mutations of acidic residues enhanced the neurovirulence of the strains. Moreover, acidity in residue E47 had a similar effect on neurovirulence. Furthermore, the alkaline E138 residue enhanced susceptibility to heparin inhibition in vitro and limited JEV diffusion in mouse brain. These results suggest that the acidity/alkalinity of the E138 residue plays an important role in neurovirulence determination. IMPORTANCE The E protein is the only glycoprotein in mature JEV, and it plays an important role in viral neurovirulence. E protein mutations attenuate JEV neurovirulence through unclear mechanisms. Here, we discovered that E138 is a predominant determinant of JEV neurovirulence. We demonstrated that the alkalinity/acidity of E138 determines JEV neurovirulence. These data contribute to the characterization of the E protein and the rational development of novel JEV vaccines.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sriparna Mukherjee ◽  
Nabonita Sengupta ◽  
Ankur Chaudhuri ◽  
Irshad Akbar ◽  
Noopur Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document