scholarly journals Novel multiplex real-time quantitative PCR detecting system approach for direct detection ofCandida aurisand its relatives in spiked serum samples

2019 ◽  
Vol 14 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Amir Arastehfar ◽  
Wenjie Fang ◽  
Farnaz Daneshnia ◽  
Abdullah MS Al-Hatmi ◽  
Wanqing Liao ◽  
...  
2006 ◽  
Vol 69 (3) ◽  
pp. 639-643 ◽  
Author(s):  
K. H. SEO ◽  
I. E. VALENTIN-BON ◽  
R. E. BRACKETT

Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.


2006 ◽  
Vol 72 (12) ◽  
pp. 7894-7896 ◽  
Author(s):  
Silvia Bofill-Mas ◽  
Nestor Albinana-Gimenez ◽  
Pilar Clemente-Casares ◽  
Ayalkibet Hundesa ◽  
Jesus Rodriguez-Manzano ◽  
...  

ABSTRACT Human adenoviruses (HAdV) and human polyomavirus JCPyV have been previously proposed as indicators of fecal viral contamination in the environment. Different wastewater matrices have been analyzed by applying real-time quantitative PCR procedures for the presence, quantity, and stability of a wide diversity of excreted HAdV and JCPyV. High quantities of HAdV and JCPyV were detected in sewage, effluent wastewater, sludge, and biosolid samples. Both viruses showed high stability in urban sewage. These results confirm the suitability of both viruses as indicators of human fecal viral pollution.


2011 ◽  
Vol 76 (1) ◽  
pp. M88-M93 ◽  
Author(s):  
Wentao Xu ◽  
Liting Li ◽  
Jiao Lu ◽  
YunBo Luo ◽  
Ying Shang ◽  
...  

2002 ◽  
Vol 68 (5) ◽  
pp. 2420-2427 ◽  
Author(s):  
Teresa Requena ◽  
Jeremy Burton ◽  
Takahiro Matsuki ◽  
Karen Munro ◽  
Mary Alice Simon ◽  
...  

ABSTRACT Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.


Sign in / Sign up

Export Citation Format

Share Document