Meropenem/vaborbactam activity in vitro: a new option for Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae treatment

2021 ◽  
Author(s):  
Federica Romanelli ◽  
Stefania Stolfa ◽  
Anna Morea ◽  
Luigi Ronga ◽  
Raffaele Del Prete ◽  
...  

Aim: Infections by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae represent a major challenge because of limited treatment strategies. New β-lactam/β-lactamase inhibitor associations may help to deal with this challenge. The aim of this study is to evaluate the in vitro susceptibility of KPC-producing K. pneumoniae for meropenem/vaborbactam in comparison with ceftazidime/avibactam against. Materials and methods: Twenty-eight strains isolated from blood cultures were evaluated. Testing for susceptibility to meropenem/vaborbactam and ceftazidime/avibactam was performed by E-test gradient strip. Results: All the clinical isolates were susceptible to meropenem/vaborbactam, while one strain was resistant to ceftazidime/avibactam with a MIC of 32 μg/ml. The median MIC of ceftazidime/avibactam evaluated after standardization was higher compared with that of meropenem/vaborbactam. Conclusion: Meropenem/vaborbactam could be an important turning point in the treatment of KPC-producing K. pneumoniae infections, especially considering the emergence of ceftazidime/avibactam resistance.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S281-S281
Author(s):  
Andrew Walkty ◽  
James Karlowsky

Abstract Background There are limited options available for the treatment of infections caused by Enterobacteriaceae that produce an NDM metallo-β-lactamase. The purpose of this study was to compare the in vitro activity of aztreonam in combination with three different β-lactam/β-lactamase inhibitors (ceftazidime–avibactam, amoxicillin-clavulanate, piperacillin–tazobactam) vs. NDM-positive Enterobacteriaceae clinical isolates. Methods Seven Escherichia coli and three Klebsiella pneumoniae clinical isolates (all NDM-positive by PCR) were included in this study. The in vitro activities of ceftazidime–avibactam, amoxicillin-clavulanate, piperacillin–tazobactam, and aztreonam were determined by disk diffusion as described by CLSI. For synergy testing, disks containing a β-lactamase inhibitor (ceftazidime–avibactam, amoxicillin-clavulanate, piperacillin tazobactam) were applied to Mueller–Hinton agar plates inoculated with the test organisms, and the plates were incubated for 1 hour. The disks were then removed and aztreonam disks were dropped on the previous disk sites. The plates were then incubated as per standard CLSI recommendations for disk diffusion testing. Results All ten isolates demonstrated phenotypic resistance to aztreonam, amoxicillin-clavulanate, and piperacillin–tazobactam, and eight were resistant to ceftazidime–avibactam (CLSI breakpoints). The zone diameter observed for aztreonam in combination with ceftazidime–avibactam was greater than for either antimicrobial on its own for nine isolates. Seven isolates (70%) had susceptibility to aztreonam restored (zone diameter ≥21 mm) in the presence of avibactam. Aztreonam in combination with amoxicillin-clavulanate demonstrated in increase in zone diameter for all isolates relative to the zone for each antimicrobial alone, but only two (20%) had aztreonam susceptibility restored. Aztreonam susceptibility was not restored for any of the isolates in combination with piperacillin–tazobactam. Conclusion Of the three β-lactam/β-lactamase inhibitor-aztreonam combinations evaluated, ceftazidime–avibactam plus aztreonam demonstrated the greatest in vitro activity vs. NDM-producing Enterobacteriaceae. Disclosures All authors: No reported disclosures.


2007 ◽  
Vol 51 (8) ◽  
pp. 2716-2719 ◽  
Author(s):  
David W. Hecht ◽  
Minerva A. Galang ◽  
Susan P. Sambol ◽  
James R. Osmolski ◽  
Stuart Johnson ◽  
...  

ABSTRACT The incidence and severity of Clostridium difficile-associated disease (CDAD) is increasing, and standard treatment is not always effective. Therefore, more-effective antimicrobial agents and treatment strategies are needed. We used the agar dilution method to determine the in vitro susceptibility of the following antimicrobials against 110 toxigenic clinical isolates of C. difficile from 1983 to 2004, primarily from the United States: doripenem, meropenem, gatifloxacin, levofloxacin, moxifloxacin, OPT-80, ramoplanin, rifalazil, rifaximin, nitazoxanide, tizoxanide, tigecycline, vancomycin, tinidazole, and metronidazole. Included among the isolates tested were six strains of the toxinotype III, NAP1/BI/027 group implicated in recent U.S., Canadian, and European outbreaks. The most active agents in vitro were rifaximin, rifalazil, tizoxanide, nitazoxanide, and OPT-80 with MICs at which 50% of the isolates are inhibited (MIC50) and MIC90 values of 0.0075 and 0.015 μg/ml, 0.0075 and 0.03 μg/ml, 0.06 and 0.125 μg/ml, 0.06 and 0.125 μg/ml, 0.125 and 0.125 μg/ml, respectively. However, for three isolates the rifalazil and rifaximin MICs were very high (MIC of >256 μg/ml). Ramoplanin, vancomycin, doripenem, and meropenem were also very active in vitro with narrow MIC50 and MIC90 ranges. None of the isolates were resistant to metronidazole, the only agent for which there are breakpoints, with tinidazole showing nearly identical results. These in vitro susceptibility results are encouraging and support continued evaluation of selected antimicrobials in clinical trials of treatment for CDAD.


1992 ◽  
Vol 11 (11) ◽  
pp. 1069-1073 ◽  
Author(s):  
K. Watanabe ◽  
K. Ueno ◽  
N. Kato ◽  
Y. Muto ◽  
K. Bandoh ◽  
...  

2001 ◽  
Vol 45 (6) ◽  
pp. 1919-1922 ◽  
Author(s):  
Arthur L. Barry ◽  
Peter C. Fuchs ◽  
Steven D. Brown

ABSTRACT The in vitro activity of daptomycin is affected by the concentration of calcium cations in the test medium. Mueller-Hinton broth is currently adjusted to contain 10 to 12.5 mg of magnesium per liter and 20 to 25 mg of calcium per liter, but for testing of daptomycin, greater concentrations of calcium (50 mg/liter) are recommended to better resemble the normal concentration of ionized calcium in human serum. Two levels of calcium were used for broth microdilution tests of 2,789 recent clinical isolates of gram-positive bacterial pathogens. MICs of daptomycin were two- to fourfold lower when the broth contained additional calcium. For most species, however, the percentages of strains that were inhibited by 2.0 μg of daptomycin per ml were essentially identical with the two broth media. Enterococci were the important exception; i.e., 92% were inhibited when tested in calcium-supplemented broth but only 35% were inhibited by 2.0 μg/ml without the additional calcium. This type of information should be considered when selecting criteria for defining in vitro susceptibility to daptomycin.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


Sign in / Sign up

Export Citation Format

Share Document