scholarly journals 1593. Antimicrobial Activity of Ceftazidime-Avibactam and Comparator Agents Against OXA-48 β-lactamase–Producing Enterobacterales Collected in International Medical Centers, Including the United States, in 2017–2018

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)

1997 ◽  
Vol 119 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Y. HIRAKATA ◽  
T. YAMAGUCHI ◽  
K. IZUMIKAWA ◽  
J. MATSUDA ◽  
K. TOMONO ◽  
...  

Glycopeptide resistance in enterococci is now a cause of clinical concern in the United States and Europe. However, details of vancomycin resistance in enterococci in Japan have been unknown. We measured minimum inhibitory concentrations (MICs) of various antimicrobial agents for a total of 218 clinical strains of enterococci isolated in our hospital in 1995–6 in addition to 15 strains with known genotypic markers of resistance. We also screened vancomycin resistance genes using a single step multiplex-PCR.In clinical isolates, only two strains of Enterococcus gallinarum were of intermediate resistance to vancomycin (MIC, 8 μg/ml), while the others were all susceptible. Glycopeptides (vancomycin and teicoplanin) and streptogramins (RP 58500 and RPR 106972) showed potent antimicrobial effects for the isolates. In addition, ampicillin was also potent for Enterococcus faecalis, while ampicillin, minocycline and gentamicin were potent for Enterococcus avium. No vanA or vanB genes were detected, while vanC1 and vanC23 genes were detected from two and four strains, respectively. Our results suggest that incidence of VRE in Japan may be estimated as still very low at this time.


2007 ◽  
Vol 51 (8) ◽  
pp. 2716-2719 ◽  
Author(s):  
David W. Hecht ◽  
Minerva A. Galang ◽  
Susan P. Sambol ◽  
James R. Osmolski ◽  
Stuart Johnson ◽  
...  

ABSTRACT The incidence and severity of Clostridium difficile-associated disease (CDAD) is increasing, and standard treatment is not always effective. Therefore, more-effective antimicrobial agents and treatment strategies are needed. We used the agar dilution method to determine the in vitro susceptibility of the following antimicrobials against 110 toxigenic clinical isolates of C. difficile from 1983 to 2004, primarily from the United States: doripenem, meropenem, gatifloxacin, levofloxacin, moxifloxacin, OPT-80, ramoplanin, rifalazil, rifaximin, nitazoxanide, tizoxanide, tigecycline, vancomycin, tinidazole, and metronidazole. Included among the isolates tested were six strains of the toxinotype III, NAP1/BI/027 group implicated in recent U.S., Canadian, and European outbreaks. The most active agents in vitro were rifaximin, rifalazil, tizoxanide, nitazoxanide, and OPT-80 with MICs at which 50% of the isolates are inhibited (MIC50) and MIC90 values of 0.0075 and 0.015 μg/ml, 0.0075 and 0.03 μg/ml, 0.06 and 0.125 μg/ml, 0.06 and 0.125 μg/ml, 0.125 and 0.125 μg/ml, respectively. However, for three isolates the rifalazil and rifaximin MICs were very high (MIC of >256 μg/ml). Ramoplanin, vancomycin, doripenem, and meropenem were also very active in vitro with narrow MIC50 and MIC90 ranges. None of the isolates were resistant to metronidazole, the only agent for which there are breakpoints, with tinidazole showing nearly identical results. These in vitro susceptibility results are encouraging and support continued evaluation of selected antimicrobials in clinical trials of treatment for CDAD.


2002 ◽  
Vol 46 (4) ◽  
pp. 1032-1037 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
R. J. Hollis ◽  
R. N. Jones

ABSTRACT Posaconazole, ravuconazole, and voriconazole are new triazole derivatives that possess potent, broad-spectrum antifungal activity. We evaluated the in vitro activity of these investigational triazoles compared with that of itraconazole and amphotericin B against 239 clinical isolates of filamentous fungi from the SENTRY Program, including Aspergillus spp. (198 isolates), Fusarium spp. (7 isolates), Penicillium spp. (19 isolates), Rhizopus spp. (4 isolates), Mucor spp. (2 isolates), and miscellaneous species (9 isolates). The isolates were obtained from 16 different medical centers in the United States and Canada between January and December 2000. In vitro susceptibility testing was performed using the microdilution broth method outlined in the National Committee for Clinical Laboratory Standards M38-P document. Overall, posaconazole was the most active compound, inhibiting 94% of isolates at a MIC of ≤1 μg/ml, followed by voriconazole (91%), amphotericin B (89%), ravuconazole (88%), and itraconazole (70%). All three new triazoles demonstrated excellent activity (MIC, ≤1 μg/ml) against Aspergillus spp. (114 Aspergillus fumigatus, 22 Aspergillus niger, 13 Aspergillus flavus, 9 Aspergillus versicolor, 8 Aspergillus terreus, and 32 Aspergillus spp.): posaconazole (98%), voriconazole (98%), ravuconazole (92%), amphotericin B (89%), and itraconazole (72%). None of the triazoles were active against Fusarium spp. (MIC at which 50% of the isolates tested were inhibited [MIC50], >8 μg/ml) or Mucor spp. (MIC50, >8 μg/ml). Posaconazole and ravuconazole were more active than voriconazole against Rhizopus spp. (MIC50, 1 to 2 μg/ml versus >8 μg/ml, respectively). Based on these results, all three new triazoles exhibited promising activity against Aspergillus spp. and other less commonly encountered isolates of filamentous fungi. The clinical value of these in vitro data remains to be seen, and in vitro-in vivo correlation is needed for both new and established antifungal agents. Surveillance efforts should be expanded in order to monitor the spectrum of filamentous fungal pathogens and their in vitro susceptibility as these new antifungal agents are introduced into clinical use.


2007 ◽  
Vol 52 (2) ◽  
pp. 570-573 ◽  
Author(s):  
Mariana Castanheira ◽  
Hélio S. Sader ◽  
Lalitagauri M. Deshpande ◽  
Thomas R. Fritsche ◽  
Ronald N. Jones

ABSTRACT A total of 104 carbapenemase (serine- and metallo-β-lactamase [MβL])-producing strains of the Enterobacteriaceae family collected from 2000 to 2005 in medical centers distributed worldwide were tested against tigecycline and 25 comparators by reference broth microdilution methods. The most frequent carbapenemase was KPC-2 or -3 (73 strains), followed by VIM-1 (14), IMP-1 (11), SME-2 (5), and NMC-A (1). All serine carbapenemases were detected in the United States, while MβL-producing strains were isolated in Europe. Carbapenemase-producing Enterobacteriaceae showed high rates of resistance to most antimicrobial agents tested. The rank order of in vitro activity against these strains was as follows: tigecycline (100.0% susceptible) > polymyxin B (88.1%) > amikacin (73.0%) > imipenem (37.5%). Tigecycline was very active (MIC90, 1 μg/ml) against this significant, contemporary collection of well-characterized strains and appears to be an excellent option compared to the polymyxins for treatment of infections caused by these multidrug-resistant Enterobacteriaceae.


2001 ◽  
Vol 45 (6) ◽  
pp. 1919-1922 ◽  
Author(s):  
Arthur L. Barry ◽  
Peter C. Fuchs ◽  
Steven D. Brown

ABSTRACT The in vitro activity of daptomycin is affected by the concentration of calcium cations in the test medium. Mueller-Hinton broth is currently adjusted to contain 10 to 12.5 mg of magnesium per liter and 20 to 25 mg of calcium per liter, but for testing of daptomycin, greater concentrations of calcium (50 mg/liter) are recommended to better resemble the normal concentration of ionized calcium in human serum. Two levels of calcium were used for broth microdilution tests of 2,789 recent clinical isolates of gram-positive bacterial pathogens. MICs of daptomycin were two- to fourfold lower when the broth contained additional calcium. For most species, however, the percentages of strains that were inhibited by 2.0 μg of daptomycin per ml were essentially identical with the two broth media. Enterococci were the important exception; i.e., 92% were inhibited when tested in calcium-supplemented broth but only 35% were inhibited by 2.0 μg/ml without the additional calcium. This type of information should be considered when selecting criteria for defining in vitro susceptibility to daptomycin.


1999 ◽  
Vol 123 (4) ◽  
pp. 285-289 ◽  
Author(s):  
Gary V. Doern ◽  
Angela B. Brueggemann ◽  
Michael A. Pfaller ◽  
Ronald N. Jones

Abstract Objective.—To assess the performance of clinical microbiology laboratories in the United States when conducting in vitro susceptibility tests with Streptococcus pneumoniae. Methods.—The results of a nationwide College of American Pathologists Proficiency Survey test sample, in which susceptibility testing of an isolate of S pneumoniae was performed, were assessed with respect to precision and accuracy. Results.—Wide variability was noted among participating laboratories with both minimum inhibitory concentration procedures and disk diffusion susceptibility tests when both methods were applied to S pneumoniae. Despite this high degree of variation, categorical interpretive errors were uncommon. Numerous laboratories reported results for antimicrobial agents that are not recommended by the National Committee for Clinical Laboratory Standards for tests with S pneumoniae. Conclusions.—Current susceptibility testing practices with S pneumoniae in the United States indicate limited precision and a tendency for laboratories to test and report results obtained with antimicrobial agents of questionable therapeutic value against this organism. Continued efforts to standardize susceptibility testing of S pneumoniae in the United States are warranted. In addition, modifications of existing interpretive criteria may be necessary.


Author(s):  
Jade L. L. Teng ◽  
Elaine Chan ◽  
Asher C. H. Dai ◽  
Gillian Ng ◽  
Tsz Tuen Li ◽  
...  

Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC 50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC 50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S323-S323
Author(s):  
Sibylle Lob ◽  
Krystyna Kazmierczak ◽  
Janet Raddatz ◽  
Daryl DePestel ◽  
Katherine Young ◽  
...  

Abstract Background Ceftolozane–tazobactam (C/T) is an antipseudomonal cephalosporin combined with a β-lactamase inhibitor. The combination was cleared by FDA and EMA and is approved in the United States and over 60 countries worldwide. Using clinical isolates collected in the United States and Canada as part of the global SMART surveillance program, we compared the activity of C/T and ceftazidime–avibactam (CAZ/AVI) against P. aeruginosa isolates and subsets nonsusceptible (NS) to selected antimicrobial agents. Methods In 2018, 31 clinical laboratories from United States and Canada collected up to 250 consecutive, aerobic or facultatively anaerobic, Gram-negative pathogens (GNP) from blood, intra-abdominal, urinary, and lower respiratory tract infections. A total of 6,178 GNP were collected, of which 1,138 (18.4%) were P. aeruginosa. MICs were determined using CLSI broth microdilution and interpreted with CLSI 2019 breakpoints. Results The MIC distributions of C/T and CAZ/AVI against 1,138 P. aeruginosa are shown below. The modal MIC value for C/T was ≥2 doubling dilutions lower than that for CAZ/AVI, and it was ≥3 dilutions lower than the C/T CLSI susceptible breakpoint, whereas the modal MIC value for CAZ/AVI was 2 dilutions lower than its susceptible breakpoint. Among all P. aeruginosa isolates, percentages of susceptibility were 96.0% (C/T), 93.8% (CAZ/AVI), 76.6% (CAZ and cefepime), 67.0% (imipenem [IMI]), 74.0% (meropenem [MEM]), 71.5% (piperacillin–tazobactam [TZP]), and 64.9% (aztreonam). Among subsets of nonsusceptible isolates, susceptibilities to C/T and CAZ/AVI were 83.5% and 74.4%, respectively (CAZ-NS subset, n = 266), 91.0% and 85.1% (IMI-NS, n = 376), 87.5% and 80.1% (MEM-NS, n = 296), 87.0% and 79.6% (TZP-NS, n = 324), and 72.4% and 57.8% among isolates nonsusceptible to all tested β-lactams (n = 116). Conclusion The activity of C/T exceeded that of CAZ/AVI and other tested comparators against a recent collection of clinical isolates of P. aeruginosa, including subsets of isolates nonsusceptible to other β-lactams. Susceptibilities to C/T were 6–14 percentage points higher than observed for CAZ/AVI among β-lactam-NS subsets. C/T promises to be an important treatment option for patients with antimicrobial-resistant P. aeruginosa infections. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 59 (6) ◽  
pp. 3263-3270 ◽  
Author(s):  
Helio S. Sader ◽  
Paul R. Rhomberg ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTArbekacin is a broad-spectrum aminoglycoside licensed for systemic use in Japan and under clinical development as an inhalation solution in the United States. We evaluated the occurrence of organisms isolated from pneumonias in U.S. hospitalized patients (PHP), including ventilator-associated pneumonia (VAP), and thein vitroactivity of arbekacin. Organism frequency was evaluated from a collection of 2,203 bacterial isolates (339 from VAP) consecutively collected from 25 medical centers in 2012 through the SENTRY Antimicrobial Surveillance Program. Arbekacin activity was tested against 904 isolates from PHP collected in 2012 from 62 U.S. medical centers and 303 multidrug-resistant (MDR) organisms collected worldwide in 2009 and 2010 from various infection types. Susceptibility to arbekacin and comparator agents was evaluated by the reference broth microdilution method. The four most common organisms from PHP wereStaphylococcus aureus,Pseudomonas aeruginosa,Klebsiellaspp., andEnterobacterspp. The highest arbekacin MIC amongS. aureusisolates from PHP (43% methicillin-resistantS. aureus[MRSA]) was 4 μg/ml. AmongP. aeruginosaisolates from PHP, only one had an arbekacin MIC of >16 μg/ml (MIC50and MIC90, 1 and 4 μg/ml), and susceptibility rates for gentamicin, tobramycin, and amikacin were 88.0, 90.0, and 98.0%, respectively. Arbekacin (MIC50, 2 μg/ml) and tobramycin (MIC50, 4 μg/ml) were the most potent aminoglycosides tested againstAcinetobacter baumannii. AgainstEnterobacteriaceaefrom PHP, arbekacin and gentamicin (MIC50and MIC90, 0.25 to 1 and 1 to 8 μg/ml for both compounds) were generally more potent than tobramycin (MIC50and MIC90, 0.25 to 2 and 1 to 32 μg/ml) and amikacin (MIC50and MIC90, 1 to 2 and 2 to 32 μg/ml). Arbekacin also demonstrated potentin vitroactivity against a worldwide collection of well-characterized MDR Gram-negative and MRSA strains.


Sign in / Sign up

Export Citation Format

Share Document