scholarly journals Motilin receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport

Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. These receptors promote gastrointestinal motility and are suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin), although for many of these molecules the evidence is sparse.

2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Gareth Sanger

Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. Activation of these receptors by endogenous motilin released from endocrine cells within the mucosa of the duodenum during fasting, induces propulsive phase III movements, part of the gastric migrating motor complex, and promotes the sensation of hunger. Drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin), although for many of these molecules the evidence is sparse. Relatively high doses of these compounds may induce vomiting and in humans, nausea.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anthony P. Davenport ◽  
Takio Kitazawa ◽  
Gareth Sanger

Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. Drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea.


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Geiger ◽  
T. Janes ◽  
H. Keshavarz ◽  
S. Summers ◽  
C. Pinger ◽  
...  

Abstract People with type 1 diabetes (T1D) require exogenous administration of insulin, which stimulates the translocation of the GLUT4 glucose transporter to cell membranes. However, most bloodstream cells contain GLUT1 and are not directly affected by insulin. Here, we report that C-peptide, the 31-amino acid peptide secreted in equal amounts with insulin in vivo, is part of a 3-component complex that affects red blood cell (RBC) membranes. Multiple techniques were used to demonstrate saturable and specific C-peptide binding to RBCs when delivered as part of a complex with albumin. Importantly, when the complex also included Zn2+, a significant increase in cell membrane GLUT1 was measured, thus providing a cellular effect similar to insulin, but on a transporter on which insulin has no effect.


1995 ◽  
Vol 59 (2-3) ◽  
pp. 147 ◽  
Author(s):  
H. Witkowski ◽  
I. Rombeck ◽  
T. Wienkötter ◽  
S. Höhmann ◽  
A. Erxleben ◽  
...  

Virology ◽  
2002 ◽  
Vol 296 (2) ◽  
pp. 234-240 ◽  
Author(s):  
William J. McGrath ◽  
Katharine S. Aherne ◽  
Walter F. Mangel

2010 ◽  
Vol 11 (2) ◽  
pp. 141-142
Author(s):  
B. Zapala ◽  
A. Sliwa ◽  
J. Goralska ◽  
L. Kaczynski ◽  
I. Wybranska

Sign in / Sign up

Export Citation Format

Share Document