scholarly journals Disc wall structural abnormalities can act as initiation sites for herniation

2020 ◽  
Vol 40 ◽  
pp. 227-238
Author(s):  
K Wade ◽  
N Berger-Roscher ◽  
V Rasche ◽  
H Wilke

Both posture and loading rate are key factors in the herniation process and can determine the failure mechanism of the disc. The influence of disc structure on the herniation process has yet to be directly observed, thus the aim of this study was to test the hypothesis that discs containing greater levels of pre-existing disruption would be more vulnerable to herniation when subjected to severe levels of posture and loading. 30 ovine lumbar motion segments were subjected to combinations of 4 loading conditions (0 - 12° flexion,0 - 9° lateral bending, 0 - 4° axial rotation, 0-1500 N axial compression) for 1000 loading cycles at 2 Hz in a dynamic disc loading simulator. The discs were scanned in an ultra-high field MRI (magnetic resonance imaging, 11.7 T) prior to and following testing. 4 discs herniated and 7 discs suffered nucleus displacement. These discs contained pre-existing defects in the central dorsal annulus. Generally, following testing, discs contained more dorsal annulus disruption, including 7 discs which developed similar characteristic defects although these did not herniate. Overall, more severe complex postures produced more disruption. While more severe postures such as twisting and bending increased disc damage, these results are probably the first directly showing that naturally occurring defects in the disc can act as initiation sites for herniation. The clinical significance of these findings is that, in principle at least, MRI based techniques could be capable of identifying vulnerable discs, with the obvious caveat that further correlation with clinical techniques is required.

2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Alexa Haeger ◽  
Arthur Coste ◽  
Cécile Lerman‐Rabrait ◽  
Julien Lagarde ◽  
Jörg B. Schulz ◽  
...  

2021 ◽  
Vol 85 (6) ◽  
pp. 3522-3530
Author(s):  
Bei Zhang ◽  
Gregor Adriany ◽  
Lance Delabarre ◽  
Jerahmie Radder ◽  
Russell Lagore ◽  
...  

2021 ◽  
Author(s):  
Sayim Gokyar ◽  
Henning U. Voss ◽  
Fraser Robb ◽  
Douglas J. Ballon ◽  
Simone Angela Winkler

Author(s):  
Andrea Duggento ◽  
Marta Bianciardi ◽  
Luca Passamonti ◽  
Lawrence L. Wald ◽  
Maria Guerrisi ◽  
...  

The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow.


2013 ◽  
Vol 39 (4) ◽  
pp. 398-404 ◽  
Author(s):  
D. Slattery ◽  
C. Aland ◽  
G. Durbridge ◽  
G. Cowin

This study reviews the literature on the anatomy of the connective tissues surrounding the distal interphalangeal joint and further characterizes the three-dimensional relationships of these structures with ultra-high field magnetic resonance imaging. Ten cadaver fingers, fixed in a solution of 5% agar and 4% formalin, were imaged utilising an ultrashield 16.4 Tesla ultra-high field magnetic resonance imaging, yielding a total of 4000 images. Images were analysed using Osirix™ (version 5.5.1 32 bit edition) for three-dimensional reconstruction. We found numerous conflicting descriptions of the connective tissue structures around the distal interphalangeal joint. Based upon our literature review and imaging studies we have defined precisely Cleland’s ligaments, the oblique proximal septum, Grayson’s ligaments, the dorsal plate, and the interosseous ligaments of the distal interphalangeal joint.


2011 ◽  
pp. 189-213 ◽  
Author(s):  
Siegfried Trattnig ◽  
Klaus Friedrich ◽  
Wolfgang Bogner ◽  
Klaus Scheffler ◽  
Oliver Bieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document