scholarly journals The role of inflammation modulation in dental pulp regeneration

2021 ◽  
Vol 41 ◽  
pp. 184-193
Author(s):  
SH Zaky ◽  
◽  
M Shehabeldin ◽  
H Ray ◽  
C Sfeir

A vital and healthy dental pulp (DP) is required for teeth to remain functional throughout a lifespan . Appreciating its value for the tooth, the regeneration of the DP is a highly researched goal. While inflammation of the DP marks the beginning of an eventual necrosis, it is also the prerequisite for the regenerative events of neovascularisation, stem cells mobilisation and reparative dentine deposition. In the light of a pro-regenerative inflammatory process, the present review discusses the role of macrophage population shift from pro- to anti-inflammatory in reversible versus irreversible pulpitis, while also analysing the overlooked contribution of pulp innervation and locally derived neuropeptides to the process. Then, the currently practiced (pulp capping and revascularisation) and researched (cells transplantation and cell homing) approaches for DP regeneration are discussed. Focusing on the role of cell homing in modulating inflammation, some potential strategies are highlighted to harness the inflammatory process for DP regeneration, mainly by reversing inflammation through macrophage induction. Next, some potential clinical applications are discussed – especially with capping materials – that could boost macrophage polarisation and complement system activation. Finally, current challenges facing the regeneration of the DP are presented, while underlining the importance of promoting an anti-inflammatory environment conducive to a regenerative process.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yoo-Jin Ko ◽  
Kil-Young Kwon ◽  
Kee-Yeon Kum ◽  
Woo-Cheol Lee ◽  
Seung-Ho Baek ◽  
...  

Porphyromonas gingivalisis considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated byP. gingivalisLPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-αand IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibitedP. gingivalisLPS-induced TNF-αand IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may preventP. gingivalisLPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability.


2014 ◽  
Vol 17 (5) ◽  
pp. 521-539 ◽  
Author(s):  
Elizabeth D. E. Papathanassoglou ◽  
Panagiota Miltiadous ◽  
Maria N. Karanikola

Introduction: Exercise attenuates inflammation and enhances levels of brain-derived neurotrophic factor (BDNF). Exercise also enhances parasympathetic tone, although its role in activating the cholinergic anti-inflammatory pathway is unclear. The physiological pathways of exercise’s effect on inflammation are obscure. Aims: To critically review the evidence on the role of BDNF in the anti-inflammatory effects of exercise and its potential involvement in the cholinergic anti-inflammatory pathway. Methods: Critical literature review of studies published in MEDLINE, PubMed, CINAHL, Embase, and Cochrane databases. Results: BDNF is critically involved in the bidirectional signaling between immune and neurosensory cells and in the regulation of parasympathetic system responses. BDNF is also intricately involved in the inflammatory response: inflammation induces BDNF production, and, in turn, BDNF exerts pro- and/or anti-inflammatory effects. Although exercise modulates BDNF and its receptors in lymphocytes, data on BDNF’s immunoregulatory/anti-inflammatory effects in relation to exercise are scarce. Moreover, BDNF increases cholinergic activity and is modulated by parasympathetic system activation. However, its involvement in the cholinergic anti-inflammatory pathway has not been investigated. Conclusion: Converging lines of evidence implicate BDNF in exercise-mediated regulation of inflammation; however, data are insufficient to draw concrete conclusions. We suggest that there is a need to investigate BDNF as a potential modulator/mediator of the anti-inflammatory effects of exercise and of the cholinergic anti-inflammatory pathway during exercise. Such research would have implications for a wide range of inflammatory diseases and for planning targeted exercise protocols.


2020 ◽  
Vol 26 (34) ◽  
pp. 4220-4233
Author(s):  
Mengmeng Jiang ◽  
Penglin Yin ◽  
Xiaodan Bai ◽  
Liji Yang ◽  
Junping Zhang ◽  
...  

The brain's response to ischemic injury is an acute and long-term inflammatory process. This process involves activation of resident cells (mainly microglia, hematogenous macrophages), production of proinflammatory mediators and infiltration of various proinflammatory cells (mainly neutrophils and lymphocytes). These cells play an essential role in ischemic brain tissue by releasing either proinflammatory or anti-inflammatory mediators at different time points. However, the exact pathogenesis of proinflammatory or anti-inflammatory genes in this process has not yet been elucidated. This review aims to investigate the inflammatory process of stroke, especially the role of proinflammatory and anti-inflammatory genes in the pathogenesis of stroke. We also summarize the current clinical trials of drugs that target the inflammatory mechanism for intervention.


2012 ◽  
Vol 9 (6) ◽  
pp. 49-54
Author(s):  
R S Fassakhov

The role of small airways in severe asthma is discussed. The involvement of small airways in the inflammatory process increases the importance of the value delivery systems for effective anti-inflammatory therapy. Extrafine aerosol beclomethasone dipropionate / formoterol (Foster) delivers the drug in the small bronchi significantly improving patient outcomes.


2020 ◽  
Vol 71 (7) ◽  
pp. 513-521
Author(s):  
Maria Totan ◽  
Elisabeta Antonescu ◽  
Lavinia Duica ◽  
Corina Roman-Filip ◽  
Sinziana Calina Silisteanu

This study was to demonstrate the role of a natural anti-inflammatory, in reducing pain, inflammatory process and increasing joint mobility in elderly patients diagnosed with knee osteoarthritis. Osteoarthritis off knee affect the articular cartilage, but also the articular capsule, leading to disability. This natural anti-inflammatory has a complex composition: extract de Boswellia serrata 300 mg, extract de curcuma 100 mg, extract Pinus pinaster 80 mg si extract de Zingiber officinale 40 mg. The combination of herbal products, which have no side effects, with electrotherapy and kinetotherapy can be a real success in this category of patients, also influencing their well-being.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 543 ◽  
Author(s):  
Frances K. Nally ◽  
Chiara De Santi ◽  
Claire E. McCoy

Multiple Sclerosis (MS) is a chronic demyelinating autoimmune disease primarily affecting young adults. Despite an unclear causal factor, symptoms and pathology arise from the infiltration of peripheral immune cells across the blood brain barrier. Accounting for the largest fraction of this infiltrate, macrophages are functionally heterogeneous innate immune cells capable of adopting either a pro or an anti-inflammatory phenotype, a phenomenon dependent upon cytokine milieu in the CNS. This functional plasticity is of key relevance in MS, where the pro-inflammatory state dominates the early stage, instructing demyelination and axonal loss while the later anti-inflammatory state holds a key role in promoting tissue repair and regeneration in later remission. This review highlights a potential therapeutic benefit of modulating macrophage polarisation to harness the anti-inflammatory and reparative state in MS. Here, we outline the role of macrophages in MS and look at the role of current FDA approved therapeutics in macrophage polarisation. Moreover, we explore the potential of particulate carriers as a novel strategy to manipulate polarisation states in macrophages, whilst examining how optimising macrophage uptake via nanoparticle size and functionalisation could offer a novel therapeutic approach for MS.


Sign in / Sign up

Export Citation Format

Share Document