scholarly journals Osteoporosis is accompanied by reduced CD274 expression in human bone marrow-derived mesenchymal stem cells

2021 ◽  
Vol 41 ◽  
pp. 603-615
Author(s):  
A-N Zeller ◽  
◽  
M Selle ◽  
Z Gong ◽  
M Winkelmann ◽  
...  

Underlying pathomechanisms of osteoporosis are still not fully elucidated. Cell-based therapy approaches pose new possibilities to treat osteoporosis and its complications. The aim of this study was to quantify differences in human bone marrow-derived mesenchymal stem cells (hBMSCs) between healthy donors and those suffering from clinically manifest osteoporosis. Cell samples of seven donors for each group were selected retrospectively from the hBMSC cell bank of the Trauma Department of Hannover Medical School. Cells were evaluated for their adipogenic, osteogenic and chondrogenic differentiation potential, for their proliferation potential and expression of surface antigens. Furthermore, a RT2 Osteoporosis Profiler PCR array, as well as quantitative real-time PCR were carried out to evaluate changes in gene expression. Cultivated hBMSCs from osteoporotic donors showed significantly lower cell surface expression of CD274 (4.98 % ± 2.38 %) than those from the control group (26.03 % ± 13.39 %; p = 0.007), as assessed by flow cytometry. In osteoporotic patients, genes involved in inhibition of the anabolic WNT signalling pathway and those associated with stimulation of bone resorption were significantly upregulated. Apart from these changes, no significant differences were found for the other cell surface antigens, adipogenic, osteogenic and chondrogenic differentiation ability as well as proliferation potential. These findings supported the theory of an influence of CD274 on the regulation of bone metabolism. CD274 might be a promising target for further investigations of the pathogenesis of osteoporosis and of cell-based therapies involving MSCs.

2017 ◽  
Vol 26 (10) ◽  
pp. 751-761 ◽  
Author(s):  
Mairéad A. Cleary ◽  
Roberto Narcisi ◽  
Anna Albiero ◽  
Florien Jenner ◽  
Laurie M.G. de Kroon ◽  
...  

2012 ◽  
Vol 11 (11) ◽  
pp. 5350-5361 ◽  
Author(s):  
Beatriz Rocha ◽  
Valentina Calamia ◽  
Jesús Mateos ◽  
Patricia Fernández-Puente ◽  
Francisco J. Blanco ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angela Bentivegna ◽  
Gaia Roversi ◽  
Gabriele Riva ◽  
Laura Paoletta ◽  
Serena Redaelli ◽  
...  

Human bone marrow mesenchymal stem cells (hBM-MSCs) are the best characterized multipotent adult stem cells. Their self-renewal capacity, multilineage differentiation potential, and immunomodulatory properties have indicated that they can be used in many clinical therapies. In a previous work we studied the DNA methylation levels of hBM-MSC genomic DNA in order to delineate a kind of methylation signature specific for early and late passages of culture. In the present work we focused on the modification of the methylation profiles of the X chromosome and imprinted loci, as sites expected to be more stable than whole genome. We propose a model where cultured hBM-MSCs undergo random modifications at the methylation level of most CGIs, nevertheless reflecting the original methylation status. We also pointed out global genome-wide demethylation connected to the long-term culture and senescence. Modification at CGIs promoters of specific genes could be related to the decrease in adipogenic differentiation potential. In conclusion, we showed important changes in CGIs methylation due to long-termin vitroculture that may affect the differentiation potential of hBM-MSCs. Therefore it is necessary to optimize the experimental conditions forin vitroexpansion in order to minimize these epigenetic changes and to standardize safer procedures.


2012 ◽  
Vol 3 (10) ◽  
pp. 3071 ◽  
Author(s):  
Tae-Jun Cho ◽  
Jonghoon Kim ◽  
Soon-Keun Kwon ◽  
Keunhee Oh ◽  
Jeong-ae Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document