scholarly journals Synchronous Belt Drive for Power Transmission in Geared Motorcycles

Author(s):  
Ayanesh Y. Joshi
2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianneng Chen ◽  
Xincheng Sun ◽  
Chuanyu Wu ◽  
Dadu Xiao ◽  
Jun Ye

AbstractThe noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields. Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China, whereas two pulley noncircular synchronous belt transmissions have been developed overseas. However, owing to the noncircular characteristics of the belt pulley, the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant, resulting in high probabilities of skipping and vibration. In this study, a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning, with no skipping; hence, the non-uniform output characteristic of the driven pulley is consistent with the theoretical value. In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism, the pitch curve of the driving synchronous belt pulley is circular, whereas those of the driven synchronous belt and tensioning pulleys are noncircular. To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley, an automatic optimization model of the tensioning pulley pitch curve is established. The motion simulation, analysis, and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written, and the variation in belt length slack under different speed ratios is analyzed based on several examples. The testbed for a circular–noncircular–noncircular three-pulley noncircular synchronous belt transmission mechanism is developed. The test shows that the three-pulley noncircular synchronous belt drives well. This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism; it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.


2016 ◽  
Vol 12 (1) ◽  
pp. 25-49
Author(s):  
László Kátai ◽  
Péter Szendrő ◽  
Péter Gárdonyi

The V-belt drive is a rather popular, widely used form of power transmission in agricultural and food industry engineering. At the same time, its stability, the lifetime of V-belt is influenced by several environmental factors, namely in the food industry by the contamination affecting the belt sides, the ambient temperature, humidity and the occasionally aggressive (acidic, alkaline air, air saturated with gases, etc.) medium. In the case of agricultural machinery, the vibration caused by uncertainly oriented pulleys with bearing in different plate structures (often being shaken in the fields) as well as alignment adjustment inaccuracies jeopardize the reliability of the parameters of the drive. Furthermore, the efficiency is determined by several factors together: the slippage occurring during drive transmission, the hysteresis loss resulting from the external and internal friction occurring with the belt entering and exiting the pulley. Experimental equipment and calculation methods were developed to determine the dynamics of temperature increase generated by the belt and pulley relationship. The temperature generated in the V-belt was measured as a function of pretension, pulley diameter and bending frequency. The so-called damping factor characterizing the contact with the pulley (the external friction when entering and exiting the groove) and the hysteresis loss (inner friction) are also determined. On the basis of the damping factor (ζ ≈ 400 Ns/m2) of the V-belt involved in the experiments the other losses (Poth) occurring from the pulley—V-belt contact and internal friction may be estimated. The drive parameters may be optimized with the mathematical model describing the effect of the pulley diameter and belt frequency on the increase in temperature. A standardized calculation method as well as design factors valid for the properly adjusted drive and normal operating conditions determined through empirical and laboratory experiments are used for the sizing of V-belt drives. The lifetime of V-belt drives designed in this way, used in extreme conditions typical of agricultural machinery will not be appropriate and will not provide clear, predictable information for maintenance planning. In such cases the results of our own many lifetime tests conducted in the given circumstances can be safely relied on. The agricultural harvesting machines are large plate-body self-propelled structures on which most of the power supply of the (threshing, cleaning, moving, etc.) machine units handling the crop is realized via belt drives. The distance and angular displacement of the axes involved in the drive can vary within wide limits. The misalignment and angular displacement of the pulleys can be the result of installation instability — due to the plate structure — and the deformation of the plate structure occurring during the operation as well. V-belt drives operate satisfactorily under such conditions as well, however these faults are unfavourable in terms of belt lifetime and result in the reduction of drive efficiency. A further aim of our research is to examine through experiments the lifetime and efficiency of V-belts used in agricultural machines as a function of drive adjustment errors. According to the results of the measurements of the geometrical adjustment errors of V-belt drives performed in the field, the pulleys of agricultural equipment are not always positioned in the medium plane of the drive. In our experiments these data served as independent variables. Figure 1 shows the arrangement of a V-belt drive in a grain harvester with the laser pulley alignment measuring instrument installed as an accessory. In the case of many machine types in 80% of the tested drives three times the permissible error was measured, and because of off-road use, due to dynamic load these errors further increased as a result of the frame deformation. The results of both the belt bending testing and the geometrical adjustment testing of the drive offer great help in the design of belt drives. At the same time they can be the source of lifetime and efficiency forecasts.


2014 ◽  
Vol 971-973 ◽  
pp. 450-453 ◽  
Author(s):  
Yi Guo ◽  
Guo Liang Ding ◽  
Zhi Qiang Li

To solve the synchronous belt drive design and 3D modeling problem, a synchronous belt drive design system has been developed with the Visual Basic language and SolidWorks platform. Applications have shown that this system can realize design calculation of the synchronous belt drive and the 3D modeling of spare parts and assemblies like the small belt pulley, large belt pulley and synchronous belt, as required by the customer. Also, it has a user-friendly interface, handy operation, simple operation, and accurate design results, to effectively shorten the design period.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Masanori Kagotani ◽  
Hiroyuki Ueda

In synchronous belt drives, it is generally difficult to eliminate pulley eccentricity, because the pulley teeth and shaft hole are produced separately and the pulley is installed on an eccentric shaft. This eccentricity affects the accuracy of rotation transmission, so that the belt tension changes during a single rotation of the pulley. This in turn affects the occurrence of resonance in the spans. In the present study, the transmission error in a synchronous belt drive with an eccentric pulley in the absence of a transmitted load was experimentally investigated for the case in which the spans undergo first-mode transverse vibration due to resonance. The transmission error was found to have a component with a period equal to the span displacement, in addition to a component with a period of half the span displacement. During a single rotation of the pulley, the magnitude of the transmission error increased, and its frequency decreased, with decreasing belt tension. The transmission error exhibited the large value when two frequency conditions were satisfied: one was that the meshing frequency was within the range of span frequency variations due to the eccentricity, and the other was that the minimum span frequency was close to an integer multiple of the pulley rotation frequency. Even if both of these conditions occurred, if the range of span frequency variations due to the eccentricity was larger than 13 Hz, the transmission error could be eliminated by adjusting the belt tension, so that the average span frequency corresponded to the meshing frequency.


2002 ◽  
Vol 124 (4) ◽  
pp. 706-712 ◽  
Author(s):  
Go¨ran Gerbert ◽  
Francesco Sorge

Analysis of power transmission in a belt drive consisting of, e.g., two pulleys might be treated as a boundary value problem. Tight side tension FT, slack side tension FS and the wrap angle α are the three natural boundary conditions. In the literature, theories are developed where seating and unseating as well as the power transmitting part of the contact are considered. The solutions presented so far don’t fulfill the boundary conditions properly, since a certain tension ratio FT/FS is associated with a certain contact angle and not an a priori specified one. It appears that a new type of full sliding solution must be introduced to handle the boundary condition problem. During part of the contact there is almost no tension variation in spite of the full sliding conditions. The designation adhesive-like solution is here introduced for that part. Conditions and character of the adhesive-like solution are outlined in the paper.


Author(s):  
Masanori Kagotani ◽  
Kenichi Makita ◽  
Hiroyuki Ueda ◽  
Tomio Koyama

Helical synchronous belt drives are more effective than conventional synchronous belt drives with respect to reducing noise and transmission error per single pitch of the pulley. However, the helix angle of the tooth trace causes axial belt movement. Therefore, a flanged pulley is used in a helical synchronous belt drive. In the present study, the transmission error in a helical synchronous belt drive using a flanged pulley under installation tension was investigated both theoretically and experimentally for the case where the pulley was rotated in bidirectional operation. The computed transmission error agrees well with the experimental results, thereby confirming the applicability of the proposed theoretical analysis for transmission error. In this case, transmission error is found to be generated by the difference in axial belt movement between the driving and driven sides, and by a change in the state of contact between the belt and pulley teeth flanks. The transmission error is reduced when the installation tension is set higher than the tension that causes a change in contact direction between the tooth flanks. In addition, transmission error does not occur when the driving and driven pulleys are of equal outside diameter and have no pulley alignment error.


Sign in / Sign up

Export Citation Format

Share Document