scholarly journals Effect of Processing Parameters on Metal Matrix Composites in Stir Casting Process Using Taguchi Technique

Author(s):  
S. Rajesh
Author(s):  
R. S. Amano ◽  
J. Xie ◽  
E. K. Lee ◽  
P. K. Rohatgi

A new experimental configuration for the casting of metal matrix composites (MMCs) using Al-4.5 wt pct Cu have been used to obtain finer microstructures around the fiber reinforcement. The new configuration allows the fibers to be extended out the mold and cooled by a heat sink. By doing so, the solidification can be made more rapid, and more primary alpha-aluminum phase can be formed on the surface of the fibers. It is believed that this can lead to improvement in the properties of the composite. CFD simulation of the solidification of Al-4.5 wt pct Cu in the casting process has been carried out by using commercial CFD code. Parametric studies on the effects of different processing parameters on solidification time have been simulated using the CFD code. These parameters include, but are not limited to, the pouring temperature of the liquid melt, sink temperature, fiber length extended out of the mold, the mold initial temperature, fiber conductivity, applied pressure, and fiber bundle diameter. Selected simulation results are compared with the available experimental data obtained from the UWM Center for Composites.


2012 ◽  
Vol 710 ◽  
pp. 365-370 ◽  
Author(s):  
Sujayakumar Prasanth ◽  
Kumaraswamy Kaliamma Ajith Kumar ◽  
Thazhavilai Ponnu Deva Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
Bellambettu Chandrasekhara Pai

Magnesium metal matrix composites (MMCs) have been receiving attention in recent years as an attractive choice for aerospace and automotive applications because of their low density and superior specific properties. Using stir casting process, AZ91 magnesium alloy metal matrix composites have been produced with different weight percentages (5, 10, 15, 20 and 25) of silicon carbide particles (SiCp) addition. Microstructural characterization reveals uniform distribution of SiC particles with good interfacial bonding between the matrix and reinforcement. Electrical conductivity and Co-efficient of Thermal Expansion (CTE) measurements carried out on these composites have yielded better properties. Improved mechanical properties such as hardness, ultimate tensile strength, and compressive strength are obtained. The microfracture mechanisms involved during tensile fracture is analyzed and correlated with the properties obtained.


Author(s):  
Uday KN ◽  
Rajamurugan G

Aluminum metal matrix composites are a new class of materials that have gathered more attention from many materialists. Especially, the automotive components like a piston, cylinder block, brake drum, etc., fabricated by different reinforcement, which has exposed better performance over conventional engineering materials. Aluminum composites are generally fabricated by stir casting technique due to simplicity in operation and adaptive to mass or job order production. The paper provides a background for the readers interested in the production of metal matrix composites through stir casting. Based on the literature assessment, the special attentions taken by the researchers to enhance the uniform distribution of particle to avoid agglomeration are discussed. The composite performances mainly depend on the aluminum matrix, particle size, the quantity of reinforcement, preheating temperature of reinforcement, and processing parameters such as stirring speed, stirring time, and wetting agents. The selection of two reinforcements and their suitable parameters for wetting are attaining interest by many researchers and maybe opted as future scope.


Sign in / Sign up

Export Citation Format

Share Document