scholarly journals Mechanical Properties Enhancement due to Network Modification by different Alkali Ions at Equal Concentration Doped in Borate Glasses-An Ultrasonic Investigation at 10MHz on the Phenomenon “Mixed Alkali Effect”

Author(s):  
Vasantha Kumar E. G
Solids ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 16-30
Author(s):  
Seiji Kojima

When oxide glasses are modified by dissimilar alkali ions, a maximum in the electric resistivity or the expansion coefficient appears, called the mixed-alkali effect (MAE). This paper reviews the MAE on the thermal, elastic, and vibrational properties of the mixed-cesium lithium borate glasses, x{(1−y)Cs2O-yLi2O}-(1−x)B2O3. For the single-alkali borate glasses, xM2O(1−x)-B2O3 (M = Li, Na, K, Rb, and Cs), the glass transition temperature, Tg = 270 °C, of a borate glass monotonically increases as the alkali content x increases. However, for the mixed-cesium lithium borate glasses the Tg shows the minimum against the lithium fraction y. The dependences of the elastic properties on the lithium fraction y were discussed regarding the longitudinal modulus, Poisson’s ratio, and Cauchy-type relation. The internal vibrational bands related to the boron-oxide structural groups and the splitting of a boson peak were discussed based on Raman scattering spectroscopy. The MAE on various physical properties are discussed on the basis of the changes in the coordination number of the borons and the nonbridging oxygens caused by the dissimilar alkali ions.


2004 ◽  
Vol 39 (13) ◽  
pp. 4325-4329 ◽  
Author(s):  
E. Mansour ◽  
H. Doweidar ◽  
G. El-Damrawi ◽  
Y. M. Moustafa

1985 ◽  
Vol 61 ◽  
Author(s):  
J. N. Mundy ◽  
G.-L. Jin

ABSTRACTThe lack of general applicability of the many theoretical models for the mixed alkali effect (MAE) in glasses is briefly reviewed. Although the MAE appears to be related to the bonding affinity of alkali ions to charge compensating centers in the glass network, experimental scatter and the difficulty of comparing different glass networks have prevented systematic tests of this relationship. The present paper discusses why the mixed alkali germanate glasses should provide a glass system where the concentration and strength of charge-compensating centers can be systematically varied and the relationship to the MAE tested. Such tests are only possible if the ionic conductivity of a series of mixed alkali germanate glasses can be measured in a reproducible manner. The measurements of the ionic conductivity of two series of X(Na,Rb)2O:(1-X)GeO2 glasses, with X = 0.19 and X = 0.29, respectively, suggest the necessary reproducibility can be attained.


2009 ◽  
Vol 54 (9(2)) ◽  
pp. 950-956 ◽  
Author(s):  
M. Kim ◽  
C.H. Song ◽  
H.W. Choi ◽  
Y.S. Yang ◽  
Y.H. Rim

Sign in / Sign up

Export Citation Format

Share Document