scholarly journals Fundamentals of Neural Networks

Author(s):  
Amey Thakur

The purpose of this study is to familiarise the reader with the foundations of neural networks. Artificial Neural Networks (ANNs) are algorithm-based systems that are modelled after Biological Neural Networks (BNNs). Neural networks are an effort to use the human brain's information processing skills to address challenging real-world AI issues. The evolution of neural networks and their significance are briefly explored. ANNs and BNNs are contrasted, and their qualities, benefits, and disadvantages are discussed. The drawbacks of the perceptron model and their improvement by the sigmoid neuron and ReLU neuron are briefly discussed. In addition, we give a bird's-eye view of the different Neural Network models. We study neural networks (NNs) and highlight the different learning approaches and algorithms used in Machine Learning and Deep Learning. We also discuss different types of NNs and their applications. A brief introduction to Neuro-Fuzzy and its applications with a comprehensive review of NN technological advances is provided.

2021 ◽  
Author(s):  
V.Y. Ilichev ◽  
I.V. Chukhraev

The article is devoted to the consideration of one of the areas of application of modern and promising computer technology – machine learning. This direction is based on the creation of models consisting of neural networks and their deep learning. At present, there is a need to generate new, not yet existing, images of objects of different types. Most often, text files or images act as such objects. To achieve a high quality of results, a generation method based on the adversarial work of two neural networks (generator and discriminator) was once worked out. This class of neural network models is distinguished by the complexity of topography, since it is necessary to correctly organize the structure of neural layers in order to achieve maximum accuracy and minimal error. The described program is created using the Python language and special libraries that extend the set of commands for performing additional functions: working with neural networks Keras (main library), integrating with the operating system Os, outputting graphs Matplotlib, working with data arrays Numpy and others. A description is given of the type and features of each neural layer, as well as the use of library connection functions, input of initial data, compilation and training of the obtained model. Next, the implementation of the procedure for outputting the results of evaluating the errors of the generator and discriminator and the accuracy achieved by the model depending on the number of cycles (eras) of its training is considered. Based on the results of the work, conclusions were drawn and recommendations were made for the use and development of the considered methodology for creating and training generative and adversarial neural networks. Studies have demonstrated the procedure for operating with comparatively simple and accessible, but effective means of a universal Python language with the Keras library to create and teach a complex neural network model. In fact, it has been proved that the use of this method allows to achieve high-quality results of machine learning, previously achievable only when using special software systems for working with neural networks.


Author(s):  
Hyun-il Lim

The neural network is an approach of machine learning by training the connected nodes of a model to predict the results of specific problems. The prediction model is trained by using previously collected training data. In training neural network models, overfitting problems can occur from the excessively dependent training of data and the structural problems of the models. In this paper, we analyze the effect of DropConnect for controlling overfitting in neural networks. It is analyzed according to the DropConnect rates and the number of nodes in designing neural networks. The analysis results of this study help to understand the effect of DropConnect in neural networks. To design an effective neural network model, the DropConnect can be applied with appropriate parameters from the understanding of the effect of the DropConnect in neural network models.


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 19-29
Author(s):  
Zhe Chu ◽  
Mengkai Hu ◽  
Xiangyu Chen

Recently, deep learning has been successfully applied to robotic grasp detection. Based on convolutional neural networks (CNNs), there have been lots of end-to-end detection approaches. But end-to-end approaches have strict requirements for the dataset used for training the neural network models and it’s hard to achieve in practical use. Therefore, we proposed a two-stage approach using particle swarm optimizer (PSO) candidate estimator and CNN to detect the most likely grasp. Our approach achieved an accuracy of 92.8% on the Cornell Grasp Dataset, which leaped into the front ranks of the existing approaches and is able to run at real-time speeds. After a small change of the approach, we can predict multiple grasps per object in the meantime so that an object can be grasped in a variety of ways.


10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


Author(s):  
Ming Zhang

Real world financial data is often discontinuous and non-smooth. Accuracy will be a problem, if we attempt to use neural networks to simulate such functions. Neural network group models can perform this function with more accuracy. Both Polynomial Higher Order Neural Network Group (PHONNG) and Trigonometric polynomial Higher Order Neural Network Group (THONNG) models are studied in this chapter. These PHONNG and THONNG models are open box, convergent models capable of approximating any kind of piecewise continuous function to any degree of accuracy. Moreover, they are capable of handling higher frequency, higher order nonlinear, and discontinuous data. Results obtained using Polynomial Higher Order Neural Network Group and Trigonometric polynomial Higher Order Neural Network Group financial simulators are presented, which confirm that PHONNG and THONNG group models converge without difficulty, and are considerably more accurate (0.7542% - 1.0715%) than neural network models such as using Polynomial Higher Order Neural Network (PHONN) and Trigonometric polynomial Higher Order Neural Network (THONN) models.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


This chapter develops two new nonlinear artificial higher order neural network models. They are sine and sine higher order neural networks (SIN-HONN) and cosine and cosine higher order neural networks (COS-HONN). Financial data prediction using SIN-HONN and COS-HONN models are tested. Results show that SIN-HONN and COS-HONN models are good models for some sine feature only or cosine feature only financial data simulation and prediction compared with polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models.


Sign in / Sign up

Export Citation Format

Share Document