scholarly journals Finite Element Analysis of I-Girder Bridge

Author(s):  
Mohd Nadeem

Abstract: In India railway bridge structures are widely designed with the method suggested by IRS – Concrete bridge code 1997.This Code of Practice applies to the use of plain, reinforced and prestressed concrete in railway bridge construction. It covers both in-situ construction and manufacture of precast units. The Code gives detailed specifications for materials and workmanship for concrete, reinforcement and prestressing tendons used in the construction of railway bridges. After defining the loads, forces and their combinations and requirements for the limit state design, particular recommendations are given for plain concrete, reinforced concrete and prestressed concrete bridge construction. The design of I-Girder bridge superstructure (deck slab and PSC I-beam) are done by calculating bending moments, shear forces, bending resistance in transverse direction, bending resistance in longitudinal direction, checking flexural cracking. The Design of PSC I-Girders is done for Bending moments and Shear forces by Dead Load, Super Imposed Dead Load (SIDL) and Live Loads (LL). The Shrinkage strain, Creep Strain and effect of Temperature rise and fall are also determined. The design is complete for Pre-stressing cables, un-tensioned reinforcements, End cross girder, Shear connectors. I-girder superstructures are the most commonly used superstructures at cross-over location in metro bridges in india, as it has the wide deck slab and it easily permits metro’s to change tracks. I-Girder superstructure construction is component wise construction unlike U-Girders. I-Girders are constructed in casting yard and its deck slab is cast in situ, parapets are also installed on later stage. Keywords: SIDL effects, Live Load effects, Derailment effect, with or without 15% future PT margin

Author(s):  
Irpan Hidayat

The bridge is a means of connecting roads which is disconnected by barriers of the river, valley, sea, road or railway. Classified by functionality, bridges can be divided into highway bridge and railroad bridge. This study discusses whether the use of I-girder with 210 m height can be used on highway bridges and railway bridges. A comparison is done on the analysis of bridge structure calculation of 50 m spans and loads used in both the function of the bridge. For highway bridge, loads are grouped into three, which are self weight girder, additional dead load and live load. The additional dead loads for highway bridge are plate, deck slab, asphalt, and the diaphragm, while for the live load is load D which consists of a Uniform Distributed Load (UDL) and Knife Edge Load (KEL) based on "Pembebanan Untuk Jembatan RSNI T-02-2005". The load grouping for railway bridge equals to highway bridge. The analysis on the railway bridges does not use asphalt, and is replaced with a load of ballast on the track and the additional dead load. Live load on the structure of the railway bridge is the load based on Rencana Muatan 1921 (RM.1921). From the calculation of the I-girder bridge spans 50 m and girder height 210 cm for railway bridge, the stress on the lower beam is over the limit stress allowed. These results identified that the I-girder height 210 cm at the railway bridge has not been able to resist the loads on the railway bridge.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Swamy Nadh Vandanapu ◽  
Muthumani Krishnamurthy

Concrete structures are prone to earthquake due to mass of the structures. The primary use of structural lightweight concrete (SLWC) is to reduce the dead load of a concrete structure, which allows the structural designer to reduce the size of the structural members like beam, column, and footings which results in reduction of earthquake forces on the structure. This paper attempts to predict the seismic response of a six-storied reinforced concrete frame with the use of lightweight concrete. A well-designed six-storey example is taken for study. The structure is modelled with standard software, and analysis is carried out with normal weight and lightweight concrete. Bending moments and shear forces are considered for both NWC and LWC, and it is observed that bending moments and shear forces are reduced to 15 and 20 percent, respectively, in LWC. The density difference observed was 28% lower when compared NWC to LWC. Assuming that the section and reinforcements are not revised due to use of LWC, one can expect large margin over and above MCE (maximum considered earthquake; IS 1893-2016), which is a desirable seismic resistance feature in important structures.


2011 ◽  
Vol 38 (2) ◽  
pp. 233-241 ◽  
Author(s):  
John Newhook ◽  
Judy Gaudet ◽  
Rahman Edalatmanesh

The steel-free bridge deck system is an innovative solution in which the concrete deck slab is externally restrained by a series of steel straps. The ultimate strength characteristics of externally reinforced concrete bridge deck slabs were investigated in this paper. A 1/3 scale experimental model of a bridge with six girders was constructed for the study. This was the first known set of test results on a bridge model with more than four girders. A single point load, simulating the dual tire print of the CHBDC design truck, was applied at various locations on the deck and loading increased until punching failure occurred. The influence of different parameters including transverse diaphragms, proximity for the load to restraint straps, residual strength after strap removal, and simultaneous application of wheel loads in adjacent panels of the deck was tested to obtain a comprehensive understanding of the resistance of this deck system. The testing results confirmed that the interior panels of the deck have inherently higher punching resistance than the exterior panels. Most significantly, the study provided significant statistical data on the punching resistance of these deck slabs.


2012 ◽  
Vol 446-449 ◽  
pp. 1172-1175
Author(s):  
Xiao Ke Li ◽  
Xi Jian Liang ◽  
Shi Ming Liu

This paper introduces the main dimensions and drawings, and discusses the static analytical results of a prestressed concrete bridge with slant-legged rigid frame. The numerical mode of this bridge was built by the specialist FEM software. The results show that the central span of box-beam and the slant-legs forms an arch-like structure which brings these members into compressive-bending states, the side span of box-beam is in bending. For the box-beam, the internal forces mainly come from the dead load, the prestress effects and the vehicle load. The sedimentation of supports and the entire warming or cooling have certain influence on the side span box-beam and the slant-legs. Decreasing the shrinkage and creep of concrete is also important for this bridge.


2006 ◽  
Vol 302-303 ◽  
pp. 131-137
Author(s):  
Ting Yu Hao

In-situ inspection and lab study were combined to analyze the prestressed concrete girders of an existing railway bridge built in 1976 in North China. The reactive components in aggregates and the alkali content of concrete were investigated. Typical reaction product was found in site and was analyzed in lab. Residual expansion of concrete cores drilled from some girders was measured. From test results, it can be deducted that alkali silica reaction had affected the concrete girders and would continue to cause expansion in the future.


2019 ◽  
Vol 14 (2) ◽  
pp. 271-284
Author(s):  
Wojciech Siekierski

Many Gerber-girder bridges have become obsolete in terms of deck width and load carrying capacity. If bridge replacement is not necessary, additional girders are installed. Sometimes, due to erection convenience, the added girders do not replicate the static scheme of the refurbished structure. Such an arrangement requires special attention to preserve structural durability. An example of the inappropriate arrangement of the widening of a Reinforced Concrete Gerber-girder road bridge is presented together with an alternative concept of refurbishment based on the addition of the continuous steel-concrete girders as the outermost ones. The added deck slab connects the added and the existing parts of the structure. Attention is drawn the static analysis of the added deck slab and the influence of the added outermost girders that do not replicate the static scheme of the existing ones. Due to different static schemes of the existing and the added girders, the traditional method of the deck slab analysis is inappropriate. The Finite Element 3D model is to be applied to access bending moments in the deck slab spans correctly. It is shown that: a) the analysis of the distribution of the bending moments in the existing and the added slab spans, especially near Gerber-hinges, should be based on the Finite Element 3D modelling; b) the analysis should consider live loads acting on the whole width of the Gerber-hinge span; c) the bending moment distribution in the widened deck slab is sensitive to the distance to the Gerber hinge.


Sign in / Sign up

Export Citation Format

Share Document