scholarly journals A Review on Agriculture Crop Prediction Techniques Using Machine Learning

Author(s):  
Firdous Hina

Abstract: Machine learning is a useful decision-making tool for predicting crop yields, as well as for deciding what crops to plant and what to do during the crop's growth season. To aid agricultural yield prediction studies, a number of machine learning techniques have been used. We employed a Systematic Literature Review (SLR) to extract and synthesize the algorithms and features used in crop production prediction research in this investigation This paper provides a comprehensive overview of the most recent machine learning applications in agriculture, with a focus on pre-harvesting, harvesting, and post-harvesting issues The papers have been studied in depth, analysed the methodology and features employed, and made recommendations for future study. Temperature, rainfall, and soil type are the most commonly utilised features, according to our data, while Artificial Neural Networks are the most commonly employed method in these models.

Author(s):  
Kale Jaydeep Narayan

Machine learning (ML) could be a helpful decision-making tool for predicting crop yields, in addition as for deciding what crops to plant and what to try throughout the crop's growth season. To help agricultural yield prediction studies, variety of machine learning techniques are used. I performed a literature review (LR) to extract and synthesize the algorithms and options employed in crop production prediction analysis. Temperature, rainfall, and soil types are most common measure used in the prediction as per my knowledge, whereas Artificial Neural Networks is the foremost normally used methodology in these models.


Author(s):  
Qi Wang ◽  
Xia Zhao ◽  
Jincai Huang ◽  
Yanghe Feng ◽  
Zhong Liu ◽  
...  

The concept of ‘big data’ has been widely discussed, and its value has been illuminated throughout a variety of domains. To quickly mine potential values and alleviate the ever-increasing volume of information, machine learning is playing an increasingly important role and faces more challenges than ever. Because few studies exist regarding how to modify machine learning techniques to accommodate big data environments, we provide a comprehensive overview of the history of the evolution of big data, the foundations of machine learning, and the bottlenecks and trends of machine learning in the big data era. More specifically, based on learning principals, we discuss regularization to enhance generalization. The challenges of quality in big data are reduced to the curse of dimensionality, class imbalances, concept drift and label noise, and the underlying reasons and mainstream methodologies to address these challenges are introduced. Learning model development has been driven by domain specifics, dataset complexities, and the presence or absence of human involvement. In this paper, we propose a robust learning paradigm by aggregating the aforementioned factors. Over the next few decades, we believe that these perspectives will lead to novel ideas and encourage more studies aimed at incorporating knowledge and establishing data-driven learning systems that involve both data quality considerations and human interactions.


Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Fabrizio Balducci ◽  
Donato Impedovo ◽  
Giuseppe Pirlo

This work aims to show how to manage heterogeneous information and data coming from real datasets that collect physical, biological, and sensory values. As productive companies—public or private, large or small—need increasing profitability with costs reduction, discovering appropriate ways to exploit data that are continuously recorded and made available can be the right choice to achieve these goals. The agricultural field is only apparently refractory to the digital technology and the “smart farm” model is increasingly widespread by exploiting the Internet of Things (IoT) paradigm applied to environmental and historical information through time-series. The focus of this study is the design and deployment of practical tasks, ranging from crop harvest forecasting to missing or wrong sensors data reconstruction, exploiting and comparing various machine learning techniques to suggest toward which direction to employ efforts and investments. The results show how there are ample margins for innovation while supporting requests and needs coming from companies that wish to employ a sustainable and optimized agriculture industrial business, investing not only in technology, but also in the knowledge and in skilled workforce required to take the best out of it.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Isonkobong Christopher Udousoro

Due to the complexity of data, interpretation of pattern or extraction of information becomes difficult; therefore application of machine learning is used to teach machines how to handle data more efficiently. With the increase of datasets, various organizations now apply machine learning applications and algorithms. Many industries apply machine learning to extract relevant information for analysis purposes. Many scholars, mathematicians and programmers have carried out research and applied several machine learning approaches in order to find solution to problems. In this paper, we focus on general review of machine learning including various machine learning techniques. These techniques can be applied to different fields like image processing, data mining, predictive analysis and so on. The paper aims at reviewing machine learning techniques and algorithms. The research methodology is based on qualitative analysis where various literatures is being reviewed based  on machine learning.


2018 ◽  
Vol 10 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Muhammad Rizwan Rashid Rana ◽  
Asif Nawaz ◽  
Javed Iqbal

Abstract Sentiment classification is the process of exploring sentiments, emotions, ideas and thoughts in the sentences which are expressed by the people. Sentiment classification allows us to judge the sentiments and feelings of the peoples by analyzing their reviews, social media comments etc. about all the aspects. Machine learning techniques and Lexicon based techniques are being mostly used in sentiment classification to predict sentiments from customers reviews and comments. Machine learning techniques includes several learning algorithms to judge the sentiments i.e Navie bayes, support vector machines etc whereas Lexicon Based techniques includes SentiWordnet, Wordnet etc. The main target of this survey is to give nearly full image of sentiment classification techniques. Survey paper provides the comprehensive overview of recent and past research on sentiment classification and provides excellent research queries and approaches for future aspects


Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 111 ◽  
Author(s):  
Muhammet Fatih Ak

In the developing world, cancer death is one of the major problems for humankind. Even though there are many ways to prevent it before happening, some cancer types still do not have any treatment. One of the most common cancer types is breast cancer, and early diagnosis is the most important thing in its treatment. Accurate diagnosis is one of the most important processes in breast cancer treatment. In the literature, there are many studies about predicting the type of breast tumors. In this research paper, data about breast cancer tumors from Dr. William H. Walberg of the University of Wisconsin Hospital were used for making predictions on breast tumor types. Data visualization and machine learning techniques including logistic regression, k-nearest neighbors, support vector machine, naïve Bayes, decision tree, random forest, and rotation forest were applied to this dataset. R, Minitab, and Python were chosen to be applied to these machine learning techniques and visualization. The paper aimed to make a comparative analysis using data visualization and machine learning applications for breast cancer detection and diagnosis. Diagnostic performances of applications were comparable for detecting breast cancers. Data visualization and machine learning techniques can provide significant benefits and impact cancer detection in the decision-making process. In this paper, different machine learning and data mining techniques for the detection of breast cancer were proposed. Results obtained with the logistic regression model with all features included showed the highest classification accuracy (98.1%), and the proposed approach revealed the enhancement in accuracy performances. These results indicated the potential to open new opportunities in the detection of breast cancer.


Author(s):  
Muzaffer Kanaan ◽  
Rüştü Akay ◽  
Canset Koçer Baykara

The use of technology for the purpose of improving crop yields, quality and quantity of the harvest, as well as maintaining the quality of the crop against adverse environmental elements (such as rodent or insect infestation, as well as microbial disease agents) is becoming more critical for farming practice worldwide. One of the technology areas that is proving to be most promising in this area is artificial intelligence, or more specifically, machine learning techniques. This chapter aims to give the reader an overview of how machine learning techniques can help solve the problem of monitoring crop quality and disease identification. The fundamental principles are illustrated through two different case studies, one involving the use of artificial neural networks for harvested grain condition monitoring and the other concerning crop disease identification using support vector machines and k-nearest neighbor algorithm.


Author(s):  
Qi Wang ◽  
Xia Zhao ◽  
Jincai Huang ◽  
Yanghe Feng ◽  
Jiahao Su ◽  
...  

The concept of ‘big data’ has been widely discussed, and its value has been illuminated throughout a variety of domains. To quickly mine potential values and alleviate the ever-increasing volume of information, machine learning is playing an increasingly important role and faces more challenges than ever. Because few studies exist regarding how to modify machine learning techniques to accommodate big data environments, we provide a comprehensive overview of the history of the evolution of big data, the foundations of machine learning, and the bottlenecks and trends of machine learning in the big data era. More specifically, based on learning principals, we discuss regularization to enhance generalization. The challenges of quality in big data are reduced to the curse of dimensionality, class imbalances, concept drift and label noise, and the underlying reasons and mainstream methodologies to address these challenges are introduced. Learning model development has been driven by domain specifics, dataset complexities, and the presence or absence of human involvement. In this paper, we propose a robust learning paradigm by aggregating the aforementioned factors. Over the next few decades, we believe that these perspectives will lead to novel ideas and encourage more studies aimed at incorporating knowledge and establishing data-driven learning systems that involve both data quality considerations and human interactions.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


Sign in / Sign up

Export Citation Format

Share Document