scholarly journals Earthquake resistant design of liquid storage tanks.

1996 ◽  
Author(s):  
Danilo Marquez
1990 ◽  
Vol 43 (11) ◽  
pp. 261-282 ◽  
Author(s):  
Franz G. Rammerstorfer ◽  
Knut Scharf ◽  
Franz D. Fisher

This is a state-of-the-art review of various treatments of earthquake loaded liquid filled shells by the methods of earthquake engineering, fluid dynamics, structural and soil dynamics, as well as the theory of stability and computational mechanics. Different types of tanks and different possibilities of tank failure will be discussed. We will emphasize cylindrical above-ground liquid storage tanks with a vertical axis. But many of the treatments are also valid for other tank configurations. For the calculation of the dynamically activated pressure due to an earthquake a fluid-structure-soil interaction problem must be solved. The review will describe the methods, proposed by different authors, to solve this interaction problem. To study the dynamic behavior of liquid storage tanks, one must distinguish between anchored and unanchored tanks. In the case of an anchored tank, the tank bottom edge is fixed to the foundation. If the tank is unanchored, partial lifting of the tank’s bottom may occur, and a strongly nonlinear problem has to be solved. We will compare the various analytical and numerical models applicable to this problem, in combination with experimental data. An essential aim of this review is to give a summary of methods applicable as tools for an earthquake resistant design, which can be used by an engineer engaged in the construction of liquid storage tanks.


Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 357-376 ◽  
Author(s):  
Mohsen Yazdanian ◽  
Jason M. Ingham ◽  
Will Lomax ◽  
Regan Wood ◽  
Dmytro Dizhur

1983 ◽  
Vol 1983 (339) ◽  
pp. 127-136 ◽  
Author(s):  
Yoshio OHNE ◽  
Hidehiro TATEBE ◽  
Kunitomo NARITA ◽  
Tetsuo OKUMURA

Author(s):  
GENE F. SIRCA ◽  
HOJJAT ADELI

In earthquake-resistant design of structures, for certain structural configurations and conditions, it is necessary to use accelerograms for dynamic analysis. Accelerograms are also needed to simulate the effects of earthquakes on a building structure in the laboratory. A new method of generating artificial earthquake accelerograms is presented through adroit integration of neural networks and wavelets. A counterpropagation (CPN) neural network model is developed for generating artificial accelerograms from any given design spectrum such as the International Building Code (IBC) design spectrum. Using the IBC design spectrum as network input means an accelerogram may be generated for any geographic location regardless of whether earthquake records exist for that particular location or not. In order to improve the efficiency of the model, the CPN network is modified with the addition of the wavelet transform as a data compression tool to create a new CPN-wavelet network. The proposed CPN-wavelet model is trained using 20 sets of accelerograms and tested with additional five sets of accelerograms available from the U.S. Geological Survey. Given the limited set of training data, the result is quite remarkable.


Sign in / Sign up

Export Citation Format

Share Document