Earthquake Resistant Design of Anchored and Unanchored Liquid Storage Tanks Under Three-Dimensional Earthquake Excitation

1991 ◽  
pp. 317-371 ◽  
Author(s):  
F. D. Fischer ◽  
F. G. Rammerstorferf ◽  
K. Scharf
1990 ◽  
Vol 43 (11) ◽  
pp. 261-282 ◽  
Author(s):  
Franz G. Rammerstorfer ◽  
Knut Scharf ◽  
Franz D. Fisher

This is a state-of-the-art review of various treatments of earthquake loaded liquid filled shells by the methods of earthquake engineering, fluid dynamics, structural and soil dynamics, as well as the theory of stability and computational mechanics. Different types of tanks and different possibilities of tank failure will be discussed. We will emphasize cylindrical above-ground liquid storage tanks with a vertical axis. But many of the treatments are also valid for other tank configurations. For the calculation of the dynamically activated pressure due to an earthquake a fluid-structure-soil interaction problem must be solved. The review will describe the methods, proposed by different authors, to solve this interaction problem. To study the dynamic behavior of liquid storage tanks, one must distinguish between anchored and unanchored tanks. In the case of an anchored tank, the tank bottom edge is fixed to the foundation. If the tank is unanchored, partial lifting of the tank’s bottom may occur, and a strongly nonlinear problem has to be solved. We will compare the various analytical and numerical models applicable to this problem, in combination with experimental data. An essential aim of this review is to give a summary of methods applicable as tools for an earthquake resistant design, which can be used by an engineer engaged in the construction of liquid storage tanks.


2004 ◽  
Vol 11 (1) ◽  
pp. 33-45 ◽  
Author(s):  
M.B. Jadhav ◽  
R.S. Jangid

Seismic response of liquid storage tanks isolated by elastomeric bearings and sliding system is investigated under real earthquake ground motions. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The coupled differential equations of motion of the system are derived and solved in the incremental form using Newmark's step-by-step method with iterations. The seismic response of isolated tank is studied to investigate the comparative effectiveness of various isolation systems. A parametric study is also carried out to study the effect of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) aspect ratio of the tank and (ii) the time period of the isolation systems. It was observed that both elastomeric and sliding systems are found to be effective in reducing the earthquake forces of the liquid storage tanks. However, the elastomeric bearing with lead core is found to perform better in comparison to other systems. Further, an approximate model is proposed for evaluation of seismic response of base-isolated liquid storage tanks. A comparison of the seismic response evaluated by the proposed approximate method and an exact approach is made under different isolation systems and system parameters. It was observed that the proposed approximate analysis provides satisfactory response estimates of the base-isolated liquid storage tanks under earthquake excitation.


2016 ◽  
Vol 24 (24) ◽  
pp. 5747-5764 ◽  
Author(s):  
Sina Safari ◽  
Reza Tarinejad

Seismic response of base isolated steel liquid storage tanks is investigated in this study by a stochastic approach in frequency domain. For the purpose of evaluating different frequency contents of seismic events on the responses of fixed and isolated tanks, the earthquake excitation is characterized by power spectral density function. Since earthquake is a random process, stochastic seismic analysis is used and root mean square response predicts behavior of system properly. Two types of isolation system are assumed and nonlinear behavior of base isolation systems are developed by an iterative statistical linearization scheme. The study demonstrates the influence of each characteristic parameter of the storage tanks and isolation system and also excitation features. It is confirmed that near-fault earthquake excitations amplify the overall response of the system. Base isolation is known as an effective technique to reduce responses appropriately. It is demonstrated that the sloshing responses of the tanks is significantly reduced by sliding bearing. Further, excitation parameters, PGV/PGA ratio of records and pulse period in near-fault ground motions, that represent differences in two sets of earthquakes are defined to recognize variation of responses.


Author(s):  
Akira Maekawa ◽  
Katsuhisa Fujita

A three-dimensional and elastic-plastic dynamic buckling analysis method that takes into consideration fluid-structure coupling and large deformation is proposed in order to accurately simulate the seismic response of cylindrical liquid storage tanks. The results of a dynamic buckling experiment of a tank using seismic motions closely match those of numerical simulation by the proposed method. The mesh size of the analytical model greatly influences the buckling analysis results. Optimization of the size is also discussed.


2002 ◽  
Vol 02 (04) ◽  
pp. 573-591 ◽  
Author(s):  
M. K. SHRIMALI ◽  
R. S. JANGID

A comparative study of performance of various isolation systems for liquid storage tanks is investigated under real earthquake ground motions. The various base isolation systems considered are the laminated rubber bearings (with and without lead core) and sliding isolation systems (with and without restoring force). The isolated liquid storage tank is idealized with three-degrees-of-freedom associated with convective, impulsive and rigid mass under uni-directional earthquake excitation. Since the force-deformation behaviour of the isolation systems is non-linear, as a result, the equations of motion are solved numerically by step-by-step method. In order to measure the effectiveness of the isolation systems, the seismic response of the isolated liquid storage tanks is compared with the corresponding response of non-isolated tanks. Further, the effectiveness of the isolation is also explored for wide range of practical liquid storage tanks considering the influence of tank aspect ratio. It is observed that the isolation systems are quite effective in attenuating the earthquake acceleration transmitted to the tank, which reduces the design seismic forces significantly. Further, it is also found that the sliding type isolation systems are more effective in controlling the response of liquid storage tanks in comparison to the elastomeric bearings. Among the various sliding systems, the resilient-friction base isolator is found to be most effective for seismic isolation of the tanks.


Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 357-376 ◽  
Author(s):  
Mohsen Yazdanian ◽  
Jason M. Ingham ◽  
Will Lomax ◽  
Regan Wood ◽  
Dmytro Dizhur

Sign in / Sign up

Export Citation Format

Share Document