scholarly journals Fluid Dynamics Modelling and Experimental Studies of the Flowing Electrolyte Channel in a Flowing Electrolyte - Direct Methanol Fuel Cell

2014 ◽  
Author(s):  
Eric Duivesteyn
Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 796
Author(s):  
Ramasamy Govindarasu ◽  
Solaiappan Somasundaram

A dynamic model of a Direct Methanol Fuel Cell is developed in the MATLAB platform. A newly proposed Coefficient Diagram based Proportional Integral Controller (CD-PIC) is designed and its parameters are calculated. The newly designed CD-PIC is implemented in a real time Direct Methanol Fuel Cell (DMFC) experimental setup. Performances in real time operation of the Direct Methanol Fuel Cell (DMFC) are evaluated. The performance of CD-PIC is obtained under tracking of set point changes. In order to evaluate the CD-PIC performances, most popular tuning rules based Conventional PI Controllers (C-PIC) are also designed and analyzed. Set point tracking is carried out for the step changes of ±10% and ±15% at two different operational points. The controller performances are analyzed in terms of Controller Performance Measuring (CPM) indices. The said performance measures indicate that the proposed CD-PIC gives the superior performances for set point changes and found very much robust in controlling DMFC.


2017 ◽  
Vol 1 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Beatriz A. Berns ◽  
Mariana F. Torres ◽  
Vânia B. Oliveira ◽  
Alexandra M. F. R. Pinto

Low methanol and water crossover with high methanol concentrations are essential requirements for a passive Direct Methanol Fuel Cell (DMFC) to be used in portable applications. Therefore, it is extremely important to clearly understand and study the effect of the different operating and configuration parameters on the cell’s performance and both methanol and water crossover. In the present work, a detailed experimental study on the performance of an in-house developed passive DMFC with 25 cm2 of active membrane area is described. Tailored membrane electrode assemblies (MEAs) with different structures and combinations of gas diffusion layers (GDL) and membranes, were tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the passive DMFC developed by the same authors.


Author(s):  
P. A. Cornellier ◽  
E. Matida ◽  
C. A. Cruickshank

In the present work, fluid dynamic simulation and experimental studies are compared to assess the validity of using computational fluid dynamics (CFD) to accurately predict the pressure losses experienced across each of the three fluid channels in a flowing electrolyte direct methanol fuel cell: methanol flow through anodic-serpentine channels; air flow through the cathodic-serpentine channels; dilute sulfuric acid flow through the flowing electrolyte (FE) channel located between two membrane-electrode assemblies (MEAs). The methanol flow rate is varied from 5 to 25 mL/min and the airflow is varied from 0.5 to 5 L/min. The flowing electrolyte flow rate is also varied from 5 to 25 mL/min in order to analyze pressure levels within the FE channel, which, according to this analysis, must be larger than the adjacent serpentine channels. This pressure difference is particularly important to maintain the distance (and flow structure) between the MEAs without affecting performance of the fuel cell. Adequately controlling the pressure of each of three fluids disables the MEAs ability to deform without the use of an electrolyte spacer, effectively creating an inter-dependent bi-layered membrane electrode diaphragm assembly (Bi-MEDA). Through CFD simulation, it was observed that pressure equalization through the Bi-MEDA approach supports the elimination of a flowing electrolyte channel spacer from current FE-DMFC designs. The reduction of the spacer is expected to decrease ohmic losses currently experienced in all FE-DMFC designs. Despite several approximations, simulations predicting pressure losses throughout the two serpentine fuel channels are compared against obtained experimental data, showing relatively good agreement for a single cell arrangement.


Author(s):  
David Ouellette ◽  
Cynthia Ann Cruickshank ◽  
Edgar Matida

A new methanol fuel cell that utilizes a liquid formic acid electrolyte, named the formic acid electrolyte-direct methanol fuel cell (FAE-DMFC) is experimentally tested. Three fuel cell configurations were examined; a flowing electrolyte and two circulating electrolyte configurations. From these three configurations, the flowing electrolyte and the circulating electrolyte, with the electrolyte outlet routed to the anode inlet, provided the most stable power output; where minimal decay in performance and less than 3 and 5.6 % variation in power output were observed in the respective configurations. The flowing electrolyte configuration also yielded the greatest power output by as much as 34 %. Furthermore, for the flowing electrolyte configuration, several key operating conditions were experimentally tested to determine the optimal operating points. It was found that an inlet concentration of 2.2 M methanol and 6.5 M formic acid, as well as a cell temperature of 52.8 °C provided the best performance.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Eric Duivesteyn ◽  
Cynthia A. Cruickshank ◽  
Edgar Matida

The performance of a direct methanol fuel cell (DMFC) can be significantly reduced by methanol crossover. One method to reduce methanol crossover is to utilize a flowing electrolyte channel. This is known as a flowing electrolyte–direct methanol fuel cell (FE–DMFC). In this study, recommendations for the improvement of the flowing electrolyte channel design and operating conditions are made using previous modeling studies on the fluid dynamics in the porous domain of the flowing electrolyte channel and on the performance of a 1D isothermal FE-DMFC incorporating multiphase flow, in addition to modeling of the nonisothermal effects on the fluid dynamics of the FE-DMFC flowing electrolyte channel. The results of this study indicate that temperature difference between flowing electrolyte inflow and the fuel cell have negligible hydrodynamic implications, except that higher fuel-cell temperatures reduce pressure drop. Reducing porosity and increasing permeability is recommended, with a porosity of around 0.4 and a porous-material microstructure typical dimension around 60–70 μm being potentially suitable values for achieving these goals.


Author(s):  
Eric Duivesteyn ◽  
Cynthia A. Cruickshank ◽  
Edgar Matida

The performance of a direct methanol fuel cell (DMFC) can be significantly reduced by methanol crossover. One method to reduce methanol crossover is to utilize a flowing electrolyte channel. This is known as a flowing electrolyte-direct methanol fuel cell (FE-DMFC). In this study, recommendations for the improvement of the flowing electrolyte channel design and operating conditions are made using previous modelling studies on the fluid dynamics in the porous domain of the flowing electrolyte channel, and on the performance of a 1D isothermal FE-DMFC incorporating multiphase flow, in addition to modelling of the non-isothermal effects on the fluid dynamics of the FE-DMFC flowing electrolyte channel. The results of this study indicate that temperature difference between flowing electrolyte inflow and the fuel cell have negligible hydrodynamic implications, except that higher fuel cell temperatures reduce pressure drop. Reducing porosity and increasing permeability is recommended, with a porosity of around 0.4 and a porous material microstructure typical dimension around 60–70 μm being potentially suitable values for achieving these goals.


Sign in / Sign up

Export Citation Format

Share Document