scholarly journals Performance of passive Direct Methanol Fuel Cell: modelling and experimental studies

2017 ◽  
Vol 1 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Beatriz A. Berns ◽  
Mariana F. Torres ◽  
Vânia B. Oliveira ◽  
Alexandra M. F. R. Pinto

Low methanol and water crossover with high methanol concentrations are essential requirements for a passive Direct Methanol Fuel Cell (DMFC) to be used in portable applications. Therefore, it is extremely important to clearly understand and study the effect of the different operating and configuration parameters on the cell’s performance and both methanol and water crossover. In the present work, a detailed experimental study on the performance of an in-house developed passive DMFC with 25 cm2 of active membrane area is described. Tailored membrane electrode assemblies (MEAs) with different structures and combinations of gas diffusion layers (GDL) and membranes, were tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the passive DMFC developed by the same authors.

2018 ◽  
Vol 32 (12) ◽  
pp. 1850145 ◽  
Author(s):  
Yingli Zhu ◽  
Xiaojian Zhang ◽  
Jianyu Li ◽  
Gary Qi

The gas diffusion layer (GDL), as an important structure of the membrane electrode assembly (MEA) of the direct methanol fuel cell (DMFC), provides a support layer for the catalyst and the fuel and the product channel. Traditionally, the material of GDL is generally carbon paper (CP). In this paper, a new material, namely three-dimensional graphene (3DG) is used as GDL for micro DMFC. The experimental results reveal that the performance of the DMFC has been improved significantly by application of 3DG. The peak powers increase from 25 mW to 31.2 mW and 32 mW by using 3DG as the anode and cathode GDL instead of CP, respectively. The reason may be the decrease of charge and mass transfer resistance of the cell. This means that the unique 3D porous architecture of the 3DG can provide lower contact resistance and sufficient fuel diffusion paths. The output performance of the cell will be further improved when porous metal current collectors is used.


2009 ◽  
Vol 60-61 ◽  
pp. 339-342
Author(s):  
Chun Guang Suo ◽  
Xiao Wei Liu ◽  
Xi Lian Wang

Membrane electrode assembly (MEA) is the key component of direct methanol fuel cell (DMFC), the structure and its preparation methods may bring great effects on the cell performances. Due to the requirement of the high performance of the MEA for the micro direct methanol fuel cell (DMFC), we provide a novel double-catalyst layer MEA using CCM-GDE (Catalyst Coated Membrane,CCM;Gas Diffusion Electrode,GDE) fabrication method. The double-catalyst layer is formed with an inner catalyst layer (in anode side: PtRu black as catalyst, in cathode side: Pt black as catalyst) and an outer catalyst layer (in anode side: PtRu/C as catalyst, in cathode side: Pt/C as catalyst). The fabrication procedures are important to the new structured MEA, thus three kinds of fabrication methods are studied, including CCM-GDE, GDE-Membrane and CCM-GDL methods. It was found that the CCM-GDE technology may enhance the contact properties between the catalyst and PEM, and increase the electrode reaction areas, resulted in increasing the performance of the DMFC.


2010 ◽  
Vol 8 (2) ◽  
Author(s):  
Shinn-Dar Wu ◽  
Chang-Pin Chou ◽  
Ay Su ◽  
Jenn-Jiang Hwang

This paper aims to analyze the membrane electrode assembly (MEA) of the direct methanol fuel cell (DMFC) in order to provide a reference for the design of DMFC. The slow kinetics of methanol oxidation and whether the anode should be hydrophobic or hydrophilic were seldom discussed in previous research. Therefore, this paper focuses on the electrode of the anode. The anodic gas diffusion layer (GDL) is treated with different hydrophilic degrees. Then, the microstructure of GDL is examined using SEM. The water content and water droplet contact angle of GDL were measured. The results are then compared with each other to determine the optimal treatment procedure of the anode. The second part of this paper proposed a new design of the DMFC system. After choosing the appropriate MEAs for the DMFC stack, the stack was combined with the water circulatory system, air circulatory system, and electricity controller to complete the DMFC system. The efficiency of the whole system is discussed.


Author(s):  
P. A. Cornellier ◽  
E. Matida ◽  
C. A. Cruickshank

In the present work, fluid dynamic simulation and experimental studies are compared to assess the validity of using computational fluid dynamics (CFD) to accurately predict the pressure losses experienced across each of the three fluid channels in a flowing electrolyte direct methanol fuel cell: methanol flow through anodic-serpentine channels; air flow through the cathodic-serpentine channels; dilute sulfuric acid flow through the flowing electrolyte (FE) channel located between two membrane-electrode assemblies (MEAs). The methanol flow rate is varied from 5 to 25 mL/min and the airflow is varied from 0.5 to 5 L/min. The flowing electrolyte flow rate is also varied from 5 to 25 mL/min in order to analyze pressure levels within the FE channel, which, according to this analysis, must be larger than the adjacent serpentine channels. This pressure difference is particularly important to maintain the distance (and flow structure) between the MEAs without affecting performance of the fuel cell. Adequately controlling the pressure of each of three fluids disables the MEAs ability to deform without the use of an electrolyte spacer, effectively creating an inter-dependent bi-layered membrane electrode diaphragm assembly (Bi-MEDA). Through CFD simulation, it was observed that pressure equalization through the Bi-MEDA approach supports the elimination of a flowing electrolyte channel spacer from current FE-DMFC designs. The reduction of the spacer is expected to decrease ohmic losses currently experienced in all FE-DMFC designs. Despite several approximations, simulations predicting pressure losses throughout the two serpentine fuel channels are compared against obtained experimental data, showing relatively good agreement for a single cell arrangement.


2014 ◽  
Vol 881-883 ◽  
pp. 927-930
Author(s):  
Dong Yun Su ◽  
Jun Ma ◽  
Hai Kun Pu

PTFE/Nafion (PN) membranes were fabricated for the application of moderate and high temperature proton exchange membrane fuel cells (PEMFCs), respectively. Membrane electrode assemblies (MEAs) were fabricated by PTFE/Nafion membranes with commercially available low and high temperature gas diffusion electrodes (GDEs).The influence of [ZrOCl2]/[Nafio wt. ratio of Nafion/ZrOCl2 solution on the membrane morphology of NFZrP and PEMFCs performance was investigated. And the influence of hybridizing silicate into the PN membranes on their direct methanol fuel cell (DMFC) performance and methanol crossover was investigated. Silicate in PN membranes causes reduction both in proton conductivity and methanol crossover of membranes. Due to the low conductivity of PTFE and silicate, PNS had a higher proton resistance than Nafion-112.The effects of introducing sub-μm porous PTFE film and ZrP particles into Nafion membranes on the DMFC performance were investigated. The influence of ZrP hybridizing process into NF membranes on the morphology of NFZrP composite membranes and thus on the DMFC performance was also discussed.


2015 ◽  
Vol 12 (5) ◽  
Author(s):  
Sh. Fakourian ◽  
M. Kalbasi ◽  
M. M. Hasani-Sadrabadi

A one-dimensional analytical model of a direct methanol fuel cell (DMFC) was presented. This model was developed to describe the electrochemical reactions on the anode and cathode electrodes, and the transport phenomena in fuel cell consisting of methanol transport from anode to cathode through the membrane (methanol crossover), diffusion of reactants in gas diffusion layers (GDLs), and fluid flow in flow channels. One of the main strike features of this work was that the complicated relations were simplified logically and the model was solved analytically by the first-order differential equation. The results of the model indicated that increasing the current density led to lower methanol concentration in anode in spite of higher oxygen concentration in cathode. The presented model supports the experimental data well.


Sign in / Sign up

Export Citation Format

Share Document