ultrasonic atomization
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 61)

H-INDEX

21
(FIVE YEARS 3)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Miguel Panão

In particle engineering, spray drying is an essential technique that depends on producing sprays, ideally made of equal-sized droplets. Ultrasonic sprays appear to be the best option to achieve it, and Faraday waves are the background mechanism of ultrasonic atomization. The characterization of sprays in this atomization strategy is commonly related to the relation between characteristic drop sizes and the capillary length produced by the forcing frequency of wavy patterns on thin liquid films. However, although this atomization approach is practical when the intended outcome is to produce sprays with droplets of the same size, drop sizes are diverse in real applications. Therefore, adequate characterization of drop size is paramount to establishing the relations between empirical approaches proposed in the literature and the outcome of ultrasonic atomization in actual operating conditions. In this sense, this work explores new approaches to spray characterization applied to ultrasonic sprays produced with different solvents. The first two introduced are the role of redundancy in drop size measurements to avoid resolution limitation in the measurement technique and compare using regular versus variable bin widths when building the histograms of drop size. Another spray characterization tool is the Drop Size Diversity to understand the limitations of characterizing ultrasonic sprays solely based on representative diameters or moments of drop size distributions. The results of ultrasonic spray characterization obtained emphasize: the lack of universality in the relation between a characteristic diameter and the capillary length associated with Faraday waves; the variability on drop size induced by both liquid properties and flow rate on the atomization outcome, namely, lower capillary lengths produce smaller droplets but less efficiently; the higher sensibility of the polydispersion and heterogeneity degrees in Drop Size Diversity when using variable bin widths to build the histograms of drop size; the higher drop size diversity for lower flow rates expressed by the presence of multiple clusters of droplets with similar characteristics leading to multimodal drop size distributions; and the gamma and log-normal mathematical probability functions are the ones that best describe the organization of drop size data in ultrasonic sprays.


Author(s):  
Keiji Yasuda ◽  
Koji Hamada ◽  
Yoshiyuki Asakura

Abstract The enrichment characteristics of amino acids by ultrasonic atomization were investigated. Samples were aqueous solutions of L-phenylalanine and L-tyrosine. The ratio of amino acid concentration in the mist to that in the solution was defined as the enrichment factor. As the flow rate of carrier gas became higher, the collection mass of mist increased and the enrichment factor decreased. The enrichment factor depended on the solution pH. The enrichment factor increased with decreasing amino acid concentration in the solution and enhanced by the addition of ultrafine bubbles.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1963
Author(s):  
Amer Alajmi ◽  
Fnyees Alajmi ◽  
Ahmed Alrashidi ◽  
Naser Alrashidi ◽  
Nor Mariah Adam

Jet engines are commonly used in aeronautical applications, and are one of the types of gas turbine engines. The circulation of air releases heat energy to expand the volume of hot fluids and impact the turbine wheel to generate power of hot gases. The present study investigates the potential of using ultrasonic atomization technology to assist in the combustion process. An experimental rig was set up to determine the performance of jet engines using ultrasonic droplets. A gas analyzer was used to measure various greenhouse emissions of exhaust gas. The performance of the engine was tested under three load levels (high, medium, low), starting from 10 psi at a steady state, to the minimum value. A significant result was tested for a low value of nitrogen monoxide at the three levels of load, and a specific result was tested for an efficiency value of 2% at the three levels of load. Carbon dioxide was found to decrease at the low load level. The use of an ultrasonic atomization device to assist in the combustion process was useful in achieving engine efficiency of 1% and a reduction of 25% in carbon dioxide exhaust gas.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1773
Author(s):  
Yu Wang ◽  
Lin Ruan

A combined circulation system of spray evaporative cooling and air cooling (CCSSECAC) is a way to enhance the cooling performance of an air-cooled electric machine while maintaining its existing structure. Based on a traditional air-cooled machine, when the discrete evaporative cooling medium particles are scattered into the airflow, they will reach the heat source with the air circulation. The cooling capacity of the cooling system is enhanced simultaneously through the phase transition and convection heat transfer. Ultrasonic atomization is a simple way to produce tiny droplets and a good way to improve the performance of CCSSECAC. To verify the effectiveness of such a system, a principle test model was built and a multi-operational condition experiment was carried out as an exploratory study. The experimental results showed that the new cooling system was feasible for horizontal machines, and the stator coil temperature was significantly reduced compared with the air-cooled mode.


2021 ◽  
Author(s):  
Balasubramanian Nallannan ◽  
Ilkka Nissila ◽  
Mikko Seppanen ◽  
Henri Siljanen ◽  
Heikki J. Nieminen

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1417
Author(s):  
Cheng-Tang Pan ◽  
Ruei-Siang Yu ◽  
Chih-Jung Yang ◽  
Lih-Ren Chen ◽  
Zhi-Hong Wen ◽  
...  

The objective of this study aimed to develop biodegradable calcium alginate microspheres carrying doxorubicin (Dox) at the micrometer-scale for sustained release and the capacity of pH regulatory for transarterial chemoembolization. Ultrasonic atomization and CaCl2 cross-linking technologies were used to prepare the microspheres. A 4-by-5 experiment was first designed to identify imperative parameters. The concentration of CaCl2 and the flow rate of the pump were found to be critical to generate microspheres with a constant volume median diameter (~39 μm) across five groups with different alginate: NaHCO3 ratios using each corresponding flow rate. In each group, the encapsulation efficiency was positively correlated to the Dox-loading %. Fourier-transform infrared spectroscopy showed that NaHCO3 and Dox were step-by-step incorporated into the calcium alginate microspheres successfully. Microspheres containing alginate: NaHCO3 = 1 exhibited rough and porous surfaces, high Young’s modulus, and hardness. In each group with the same alginate: NaHCO3 ratio, the swelling rates of microspheres were higher in PBS containing 10% FBS compared to those in PBS alone. Microspheres with relatively high NaHCO3 concentrations in PBS containing 10% FBS maintained better physiological pH and higher accumulated Dox release ratios. In two distinct hepatocellular carcinoma-derived cell lines, treatments with microspheres carrying Dox demonstrated that the cell viabilities decreased in groups with relatively high NaHCO3 ratios in time- and dose-dependent manners. Our results suggested that biodegradable alginate microspheres containing relatively high NaHCO3 concentrations improved the cytotoxicity effects in vitro.


Sign in / Sign up

Export Citation Format

Share Document