scholarly journals PENGARUH PENAMBAHAN SERBUK BATA MERAH TERHADAP STABILITAS TANAH LEMPUNG SEBAGAI TANAH DASAR JALAN

2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Moch. Sholeh ◽  
Dandung Novianto ◽  
Gerard Aponno

Dosen Teknik Sipil Politeknik Negeri Malang Clay consists of grains - grains are very small (<0002 mm) and shows the nature - the natureof plasticity and cohesion. Cohesion indicates the fact that part - the part that is attached to eachother, while the plasticity is a trait that allows the form of the material was changed - edit withoutchanging the content or without returning to its original form, and without any cracks or brokens.And clay with high plasticity index has strong support low when used as a basic foundation of thehighway, so the need for soil improvement.From the above problems then this study aims to engineer clay with red brick powder in fourcomparisons. The first native land. Both the original soil mixed with red brick powder 5%. Thethird native soil mixed with red brick powder 7.5%. The four original soil mixed with red brickpowder 10%. Each of these sought specific gravity, liquid limit, plastic limit and plasticity index onthe original soil, mixing 5%, 7.5% and 10%. From the analysis of data obtained the followingconclusion: the original soil, the value amounting to 60.9 Liquid limit, plastic limit values of 42.8and plasticity index value of 18.1. The most optimal additional percentage is 7.5%. And PlasticityIndex value at 7.5% is 20,31.Key words : Red brick powder, Soil Stability, Subgrade and the Road.

2014 ◽  
Vol 10 (2) ◽  
Author(s):  
Moch. Sholeh ◽  
Dandung Novianto

Moch. Sholeh1 & Dandung Novianto21 & 2Fakultas Teknik Jurusan Teknik Sipil Politeknik Negeri MalangABSTRACTClay consists of grains - grains are very small (<0002 mm) and shows the nature - the natureof plasticity and cohesion. Cohesion indicates the fact that part - the part that is attached to eachother, while the plasticity is a trait that allows the form of the material was changed - edit withoutchanging the content or without returning to its original form, and without any cracks or brokens.And clay with high plasticity index has strong support low when used as a basic foundation of thehighway, so the need for soil improvement.From the above problems then this study aims to engineer clay with red brick powder in fourcomparisons. The first native land. Both the original soil mixed with red brick powder 5%. The thirdnative soil mixed with red brick powder 7.5%. The four original soil mixed with red brick powder10%. Each of these sought specific gravity, liquid limit, plastic limit and plasticity index on theoriginal soil, mixing 5%, 7.5% and 10%. From the analysis of data obtained the following conclusion:the original soil, the value amounting to 60.9 Liquid limit, plastic limit values of 42.8 and plasticityindex value of 18.1. The most optimal additional percentage is 7.5%. And Plasticity Index value at7.5% is 20,31.Key words : Red brick powder, Soil Stability, Subgrade and the Road


2020 ◽  
Vol 19 (1) ◽  
pp. 79-86
Author(s):  
Muhammad Yunus ◽  
Muhammad Aswan

The road conditions in the Fakfak Regency area have suffered a lot of damage, this is related to the subgrade condition of the road in the form of clay. One method that is widely used to improve the characteristics of clay that does not fulfill the requirements as a road subgrade material is to add fly ash. Aim of this study was to determine the value of clay plasticity before and after adding rock ash with the percentage of stone ash 8%, 16%, 32%. From the results of testing on clay soaked for 7 days can reduce the liquid limit value where the largest decrease is 15,24% of the original soil occurs in the addition of 32% fly ash with a value of 66,86%. The plastic limit value also decreased by 20,40% from the original soil with a value of 46,10% at the addition of 32% fly ash. And the plasticity index value experienced the largest decrease in the addition of 32% stone ash with a decrease of 0,97% from the original soil with a value of 20,76%. In clay soil which was brooded for 14 days the largest liquid limit value decreased which was 18.72% of the original soil occurred in the addition of 32% fly ash with a value of 64,11%. The plastic limit value also decreased by 21,77% from the original land with a value of 45,31% at the addition of 32% fly ash. And the plasticity index value experienced the largest decrease in the addition of 32% stone ash with a decrease of 10,32% from the original land with a value of 18,80%.


Clay Minerals ◽  
1971 ◽  
Vol 9 (1) ◽  
pp. 1-17 ◽  
Author(s):  
J. A. Bain

AbstractThe plastic properties of clays are sufficiently variable to offer a simple but practical aid to identification. This can be done by using their Atterberg 'plastic limit' and 'plasticity index' values as parameters for an identification chart. The advantages and disadvantages of the technique are discussed, and results for a wide variety of clay minerals, particularly industrial clay types, are illustrated. A brief summary is also given of the effect of non-clay impurities, and reference is made to the correlation of Atterberg limit values with other physical properties of clays.


2018 ◽  
Vol 1 (1) ◽  
pp. 41
Author(s):  
Annisaa Dwiretnani

Clay is a type of soil that has a high shrinkage when the change in water content. Construction of roads built on clay soil often damaged, eg cracked or bumpy roads would be damaged so that road before reaching the age of the plan. This study analyzes the behavior of clay in the area of Mendalo Darat, Provinsi Jambi, get maximum soil density and optimum moisture content with the addition of gravel 10%, 20%, 30% and 40%, then tested in the from of nature of the soil, the California Bearing Ratio (CBR). The results, according to the Unified Soil Classification System (USCS) methods. The addition of gravel will cause the properties of the soil Liquid Limit (LL) decreased with Plastic Limit (PL) decreased so that the Plasticity Index (PI) decreased. The addition of gravel will be working actively on the CBR test. From the test results obtained, clay that is stabilized with gravel on variations of 10%, 20%, 30% and 40% indicate an increase in crayying capacity soil and significant decrease in plasticity index. On the gravel mixture of 40% there is significant increase in carrying capacity of 11,90% of power support for the original soil, and on the gravel mixture of 40% also decreased index plasticity of 1,21 % of the original soil plasticity index. The smaller the plasticity index, the carrying capacity is getting bigger.Keywords: clay, stabilized, CBR


1976 ◽  
Vol 24 (1) ◽  
pp. 43-57
Author(s):  
W.P. Stakman ◽  
B.G. Bishay

Particle size distribution, moisture retention curves and consistency limits were determined for six soils from northwestern Egypt. The soils contained 25-61% CaCO3 and attapulgite was the major clay mineral. In the clay and clay loam soils the CaCO3 was predominantly in the silt and clay fractions, in the sandy loam it was regularly distributed over the clay, silt and sand fractions and in the loamy sand it was mainly in the sand fraction. Decalcification shifted the particle size distribution to a coarser texture class and increased porosity and moisture content. Liquid limit and plasticity index increased with increasing clay and CaCO3 contents up to 40% clay and 35% CaCO3. The plastic limit stayed rather constant at increasing clay and CaCO3 contents. The liquid limit corresponded with suctions of pF 1.3-1.9 within the flex range from the saturated to the unsaturated condition of the pF curves. The plastic limit and the plasticity index corresponded with pF 2.1-3.0 and 2.6-3.8, respectively. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document