soil plasticity
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 45 (1) ◽  
pp. 20200312
Author(s):  
Amin Soltani ◽  
Brendan C. O’Kelly
Keyword(s):  

2021 ◽  
Author(s):  
Bartłomiej Szczepan Olek

AbstractIntrinsic soil properties, such as the Atterberg limits, are essential factors influencing the mechanical behaviour of the fine-grained soils. In this study, a series of long-term multiple-stage loading oedometer tests were performed on alluvial organic soils to investigate the creep behaviour. The plasticity ratios ranged from 0.4 to 0.63. The smaller value of the plasticity ratio Rp indicated higher soil plasticity. The results showed that the coefficient of secondary compression Cαe of alluvial organic soils was stress- and strain-rate-dependent. The coefficient of secondary compression change index m was derived using a double-logarithmic approach for a creep degradation and was related to the plasticity and clay percentage to fines. Based on the results, it was found that high plasticity soils exhibit slow creep degradation rate during one-dimensional straining under normally consolidated state. The results show that the higher soil plasticity expressed by the plasticity index, plasticity ratio and clay percentage to fines, smaller the coefficient of secondary compression change index. Moreover, the correlations among a soil plasticity properties and creep parameters for the alluvial soils have also been proposed.


2021 ◽  
Vol 44 (2) ◽  
pp. 1-9
Author(s):  
Mohammed Abdulnafaa ◽  
Muwafaq Awad ◽  
Ali Cabalar ◽  
Nurullah Akbulut ◽  
Burak Ozufacik

The study aims to investigate the effects of three different construction and demolition materials (CDMs), including crushed waste asphalt (CWA), crushed waste bricks (CWB), and crushed waste concrete (CWC), on some geotechnical properties of low plastic clayey soil, particularly, the undrained shear strength (Su) and the hydraulic conductivity (k). A set of experimental tests were performed on clayey soil and on clayey soil-CDM mixtures at mixing ratios of 5%, 10%, 15%, and 20% by dry weight. The results show that the soil plasticity decreases as the CDMs increase. Quantitatively, it is found a maximum of 12%, 6%, and 6% decrease in the liquid limits (LL) and a maximum of 9%, 4%, and 6% decrease in the plasticity limit (PI) of the mixtures with 20% of CWA, CWB, and CWC, respectively. The results of the Su estimated empirically from the fall cone tests show that the Su decreases as the CDMs increase. The Su reduces by approximately 10% and 2% of the mixtures with 20% CWA and CWB, respectively. But the Su is not affected by the CWC additive for water content lower than approximately 35%. The k value increases as the CDMs increase. The results show that the reported k value increases by 75%, 79%, and 247% of the mixtures with 20% of CWA, CWB, and CWC, respectively. Additionally, the k values obtained from the consolidation test confirm the findings of the effect of the CDMs on the coefficient of hydraulic conductivity.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 247
Author(s):  
Amin Soltani ◽  
Brendan C. O’Kelly

Given its apparent limitations, various attempts have been made to develop alternative testing approaches to the standardized rolling-thread plastic limit (PLRT) method (for fine-grained soils), targeting higher degrees of repeatability and reproducibility. Among these, device-rolling techniques, including the method described in ASTM D4318/AASHTO T90 standards, based on original work by Bobrowski and Griekspoor (BG) and which follows the same basic principles as the standard thread-rolling (by hand) test, have been highly underrated by some researchers. To better understand the true potentials and/or limitations of the BG method for soil plasticity determination (i.e., PLBG), this paper presents a critical reappraisal of the PLRT–PLBG relationship using a comprehensive statistical analysis performed on a large and diverse database of 60 PLRT–PLBG test pairs. It is demonstrated that for a given fine-grained soil, the BG and RT methods produce essentially similar PL values. The 95% lower and upper (water content) statistical agreement limits between PLBG and PLRT were, respectively, obtained as −5.03% and +4.51%, and both deemed “statistically insignificant” when compared to the inductively-defined reference limit of ±8% (i.e., the highest possible difference in PLRT based on its repeatability, as reported in the literature). Furthermore, the likelihoods of PLBG underestimating and overestimating PLRT were 50% and 40%, respectively; debunking the notion presented by some researchers that the BG method generally tends to greatly underestimate PLRT. It is also shown that the degree of underestimation/overestimation does not systematically change with changes in basic soil properties; suggesting that the differences between PLBG and PLRT are most likely random in nature. Compared to PLRT, the likelihood of achieving consistent soil classifications employing PLBG (along with the liquid limit) was shown to be 98%, with the identified discrepancies being cases that plot relatively close to the A-Line. As such, PLBG can be used with confidence for soil classification purposes.


2021 ◽  
Vol 4 (1) ◽  
pp. 171
Author(s):  
Jason Sastilaya ◽  
Gregorius Sandjaja Sentosa

The expansion of housing in big cities cannot be denied given the rapid population growth in Indonesia. One of the areas that is currently expanding housing is Kosambi City, Tangerang. Soil conditions in Kosambi City are soft soil with high moisture content and soil plasticity, low permeability and soil bearing capacity, and high pore water pressure. This soft soil condition makes the consolidation decline take a very long time. To overcome the problem of the length of time for this consolidation settlement, it is necessary to improve the land. Soil improvement is being carried out, namely the method of vaccum consolidation with preloading. The combination of these methods is carried out by installing a vertical drainage system in the form of prefabricated fabricated drain (PVD) in soft soil, then the initial load is given in the form of preloading on the soil. The calculation results show that the amount of consolidation reduction that occurs when clay soil is loaded with a stockpile of 1.2 m high, a water surcharge of 1.3 m and a vaccum load is 0.3929 m and 0.6968 m for 85 years. The combined method of preloading and PVD is proven to be able to accelerate the time of consolidation, where Preloading and PVD are installed in a triangle pattern between 0.80 m to a depth of 12 m, capable of achieving a consolidation degree of 90% within 8 weeksPerluasan perumahan di kota besar tentu tidak dapat dipungkiri mengingat pesatnya pertumbuhan penduduk di Indonesia. Salah satu daerah yang sedang dilakukan perluasan perumahan yaitu Kosambi City, Tangerang. Kondisi tanah di Kosambi City merupakan tanah lunak dengan kadar air dan plastisitas tanah yang tinggi, permeabilitas dan daya dukung tanah yang rendah, serta tingginya tekanan air pori. Kondisi tanah lunak ini membuat penurunan konsolidasi membutuhkan waktu yang sangat lama. Untuk mengatasi masalah lamanya waktu penurunan konsolidasi ini, perlu dilakukan perbaikan tanah. Perbaikan tanah yang dilakukan yaitu metode vaccum consolidation dengan preloading. Kombinasi pada metode ini dilakukan dengan cara memasang sistem drainase vertikal berupa prefabricated fabricated drain (PVD) di dalam tanah lunak, kemudian diberikan beban awal yaitu berupa timbunan (preloading) pada tanah tersebut. Hasil perhitungan menunjukkan besar penurunan konsolidasi yang terjadi jika tanah lempung dibebani dengan timbunan setinggi 1,2 m, water surcharge setinggi 1,3 m dan beban vaccum  adalah 0,3929 m dan 0,6968 m selama 85 tahun. Metode kombinasi preloading dan PVD terbukti mampu mempercepat waktu konsolidasi, dimana Preloading dan PVD dipasang dengan pola segitiga berjarak 0,80 m hingga kedalaman 12 m, mampu mencapai derajat konsolidasi 90% dalam waktu 8 minggu. 


Géotechnique ◽  
2020 ◽  
Vol 70 (12) ◽  
pp. 1109-1119 ◽  
Author(s):  
Xi Chen ◽  
Dongyong Wang ◽  
Yuzhen Yu ◽  
Yannan Lyu

Sign in / Sign up

Export Citation Format

Share Document