scholarly journals Effect of increasing nickel and molybdenum content in austenitic steel on thermal deformation conditions for achieving the peak strain

2021 ◽  
Vol 11 (2) ◽  
pp. 170-174
Author(s):  
Anton Tsvetkov ◽  
Irina Teplukhina ◽  
Anastasiya Kosulnikova
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5426
Author(s):  
Jun Chen ◽  
Shuang Li ◽  
Jia-Kuan Ren ◽  
Zhen-Yu Liu

The deformation structure and its contribution to strain hardening of a high manganese austenitic steel were investigated after tensile deformation at 298 K, 77 K and 4 K by means of electron backscatter diffraction and transmission electron microscopy, exhibiting a strong dependence of strain hardening and deformation structure on deformation temperature. It was demonstrated that sufficient twinning indeed provides a high and stable strain hardening capacity, leading to a simultaneous increase in strength and ductility at 77 K compared with the tensile deformation at 298 K. Moreover, although the SFE of the steel is ~34.4 mJ/m2 at 4 K, sufficient twinning was not observed, indicating that the mechanical twinning is hard to activate at 4 K. However, numerous planar dislocation arrays and microbands can be observed, and these substructures may be a reason for multi-peak strain hardening behaviors at 4 K. They can also provide certain strain hardening capacity, and a relatively high total elongation of ~48% can be obtained at 4 K. In addition, it was found that the yield strength (YS) and ultimate tensile strength (UTS) linearly increases with the lowering of the deformation temperature from 298 K to 4 K, and the increment in YS and UTS was estimated to be 2.13 and 2.43 MPa per 1 K reduction, respectively.


Alloy Digest ◽  
2014 ◽  
Vol 63 (11) ◽  

Abstract Uranus 31 is a super-austenitic steel with very high nickel, chromium, and molybdenum content. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1191. Producer or source: Industeel USA, LLC.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


2002 ◽  
Vol 12 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Feng Sun ◽  
Wenfeng Yu ◽  
Zuhai Cheng ◽  
Yaoning Zhang

2003 ◽  
Vol 112 ◽  
pp. 407-410
Author(s):  
S. A. Danilkin ◽  
M. Hölzel ◽  
H. Fuess ◽  
H. Wipf ◽  
T. J. Udovic ◽  
...  

Author(s):  
A. H. Sari ◽  
Valiantsin M. Astashynski ◽  
E. A. Kostyukevich ◽  
A. M. Kuzmitski ◽  
V. V. Uglov ◽  
...  

Author(s):  
Nikolai N. Cherenda ◽  
Vladimir V. Uglov ◽  
Yu. V. Martinovich ◽  
I. A. Betanov ◽  
Valiantsin M. Astashynski ◽  
...  

2007 ◽  
Vol 49 (6) ◽  
pp. 325-329
Author(s):  
Vesna Alar ◽  
Ivan Juraga ◽  
Frankica Kapor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document