scholarly journals On the Conditional and Unconditional Type I Error Rates and Power of Tests in Linear Models with Heteroscedastic Errors

Author(s):  
Patrick J. Rosopa ◽  
Alice M. Brawley ◽  
Theresa P. Atkinson ◽  
Stephen A. Robertson

Preliminary tests for homoscedasticity may be unnecessary in general linear models. Based on Monte Carlo simulations, results suggest that when testing for differences between independent slopes, the unconditional use of weighted least squares regression and HC4 regression performed the best across a wide range of conditions.

2019 ◽  
Vol 3 ◽  
Author(s):  
Nicolas Haverkamp ◽  
André Beauducel

  To derive recommendations on how to analyze longitudinal data, we examined Type I error rates of Multilevel Linear Models (MLM) and repeated measures Analysis of Variance (rANOVA) using SAS and SPSS. We performed a simulation with the following specifications: To explore the effects of high numbers of measurement occasions and small sample sizes on Type I error, measurement occasions of m = 9 and 12 were investigated as well as sample sizes of n = 15, 20, 25 and 30. Effects of non-sphericity in the population on Type I error were also inspected: 5,000 random samples were drawn from two populations containing neither a within-subject nor a between-group effect. They were analyzed including the most common options to correct rANOVA and MLM-results: The Huynh-Feldt-correction for rANOVA (rANOVA-HF) and the Kenward-Roger-correction for MLM (MLM-KR), which could help to correct progressive bias of MLM with an unstructured covariance matrix (MLM-UN). Moreover, uncorrected rANOVA and MLM assuming a compound symmetry covariance structure (MLM-CS) were also taken into account. The results showed a progressive bias for MLM-UN for small samples which was stronger in SPSS than in SAS. Moreover, an appropriate bias correction for Type I error via rANOVA-HF and an insufficient correction by MLM-UN-KR for n < 30 were found. These findings suggest MLM-CS or rANOVA if sphericity holds and a correction of a violation via rANOVA-HF. If an analysis requires MLM, SPSS yields more accurate Type I error rates for MLM-CS and SAS yields more accurate Type I error rates for MLM-UN.


2005 ◽  
Vol 65 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Christine E. Demars

2019 ◽  
Vol 14 (2) ◽  
pp. 399-425 ◽  
Author(s):  
Haolun Shi ◽  
Guosheng Yin

2014 ◽  
Vol 38 (2) ◽  
pp. 109-112 ◽  
Author(s):  
Daniel Furtado Ferreira

Sisvar is a statistical analysis system with a large usage by the scientific community to produce statistical analyses and to produce scientific results and conclusions. The large use of the statistical procedures of Sisvar by the scientific community is due to it being accurate, precise, simple and robust. With many options of analysis, Sisvar has a not so largely used analysis that is the multiple comparison procedures using bootstrap approaches. This paper aims to review this subject and to show some advantages of using Sisvar to perform such analysis to compare treatments means. Tests like Dunnett, Tukey, Student-Newman-Keuls and Scott-Knott are performed alternatively by bootstrap methods and show greater power and better controls of experimentwise type I error rates under non-normal, asymmetric, platykurtic or leptokurtic distributions.


2016 ◽  
Vol 15 (1) ◽  
pp. 452-471 ◽  
Author(s):  
Hongjing Liao ◽  
Yanju Li ◽  
Gordon Brooks

2021 ◽  
Author(s):  
Megha Joshi ◽  
James E Pustejovsky ◽  
S. Natasha Beretvas

The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some meta-analyses also include multiple studies conducted by the same lab or investigator, creating another potential source of dependence. An increasingly popular method to handle dependence is robust variance estimation (RVE), but this method can result in inflated Type I error rates when the number of studies is small. Small-sample correction methods for RVE have been shown to control Type I error rates adequately but may be overly conservative, especially for tests of multiple-contrast hypotheses. We evaluated an alternative method for handling dependence, cluster wild bootstrapping, which has been examined in the econometrics literature but not in the context of meta-analysis. Results from two simulation studies indicate that cluster wild bootstrapping maintains adequate Type I error rates and provides more power than extant small sample correction methods, particularly for multiple-contrast hypothesis tests. We recommend using cluster wild bootstrapping to conduct hypothesis tests for meta-analyses with a small number of studies. We have also created an R package that implements such tests.


Sign in / Sign up

Export Citation Format

Share Document