scholarly journals Maximum Likelihood Estimations Based on Upper Record Values for Probability Density Function and Cumulative Distribution Function in Exponential Family and Investigating Some of Their Properties

2020 ◽  
Vol 18 (2) ◽  
pp. 2-27
Author(s):  
Saman Hosseini ◽  
Parviz Nasiri ◽  
Sharad Damodar Gore

A useful subfamily of the exponential family is considered. The ML estimation based on upper record values are calculated for the parameter, Cumulative Density Function, and Probability Density Function of the subfamily. The relationship between MLE based on record values and a random sample are discussed, along with some properties of these estimators, and its utility is shown for large samples.

Author(s):  
Christophe Chesneau ◽  
Lishamol Tomy ◽  
Jiju Gillariose

AbstractThis note focuses on a new one-parameter unit probability distribution centered around the inverse cosine and power functions. A special case of this distribution has the exact inverse cosine function as a probability density function. To our knowledge, despite obvious mathematical interest, such a probability density function has never been considered in Probability and Statistics. Here, we fill this gap by pointing out the main properties of the proposed distribution, from both the theoretical and practical aspects. Specifically, we provide the analytical form expressions for its cumulative distribution function, survival function, hazard rate function, raw moments and incomplete moments. The asymptotes and shape properties of the probability density and hazard rate functions are described, as well as the skewness and kurtosis properties, revealing the flexible nature of the new distribution. In particular, it appears to be “round mesokurtic” and “left skewed”. With these features in mind, special attention is given to find empirical applications of the new distribution to real data sets. Accordingly, the proposed distribution is compared with the well-known power distribution by means of two real data sets.


Author(s):  
Chi-Hua Chen ◽  
Fangying Song ◽  
Feng-Jang Hwang ◽  
Ling Wu

To generate a probability density function (PDF) for fitting probability distributions of real data, this study proposes a deep learning method which consists of two stages: (1) a training stage for estimating the cumulative distribution function (CDF) and (2) a performing stage for predicting the corresponding PDF. The CDFs of common probability distributions can be adopted as activation functions in the hidden layers of the proposed deep learning model for learning actual cumulative probabilities, and the differential equation of trained deep learning model can be used to estimate the PDF. To evaluate the proposed method, numerical experiments with single and mixed distributions are performed. The experimental results show that the values of both CDF and PDF can be precisely estimated by the proposed method.


Author(s):  
Robert J Marks II

In this Chapter, we present application of Fourier analysis to probability, random variables and stochastic processes [1089, 1097, 1387, 1329]. Arandom variable, X, is the assignment of a number to the outcome of a random experiment. We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails X = 0. Often the number is equated to the numerical outcome of the experiment, such as the number of dots on the face of a rolled die or the measurement of a voltage in a noisy circuit. The cumulative distribution function is defined by FX(x) = Pr[X ≤ x]. (4.1) The probability density function is the derivative fX(x) = d /dxFX(x). Our treatment of random variables focuses on use of Fourier analysis. Due to this viewpoint, the development we use is unconventional and begins immediately in the next section with discussion of properties of the probability density function.


1968 ◽  
Vol 64 (2) ◽  
pp. 481-483 ◽  
Author(s):  
J. K. Wani

In this paper we give a characterization theorem for a subclass of the exponential family whose probability density function is given bywhere a(x) ≥ 0, f(ω) = ∫a(x) exp (ωx) dx and ωx is to be interpreted as a scalar product. The random variable X may be an s-vector. In that case ω will also be an s-vector. For obvious reasons we will call (1) as the linear exponential family. It is easy to verify that the moment generating function (m.g.f.) of (1) is given by


Author(s):  
L A Rosa ◽  
S Nurrohmah ◽  
I Fithriani

The one parameter Lindley distribustion (theta) has been widely used in various field such as biology, technique, medical, and industries. Lindley distribution is capable for modelling data with monotone increasing hazard rate. However, in real life, there are situations where the hazard rate is not monotone. Therefore, to enhance the Lindley distribution capabilitiesfor modelling data, a modification can be used by using Alpha Power Transformed method. The result of the modification of Lindley distribution is commonly called Alpha Power Transformed Lindley distribution (APTL) distribution that has two parameters (alpha, theta). This new APTL distribution is appropriate in modelling data with decreasing or unimodal shaped of probability density function, and has hazard rates with increasing, decreasing, and upside-down bathtub shaped. The properties of the proposed distribution are discussed include probability density function, cumulative distribution function, survival function, hazard rate function, moment generating function, and rth moment. Themodel parameters are obtained using maximum likelihood method. The waiting time data is used as an illustration to describe the utility of APTL distribution.


Author(s):  
A. A. M. Mahmoud ◽  
R. M. Refaey ◽  
G. R. AL-Dayian ◽  
A. A. EL-Helbawy

In this paper, a bivariate Burr Type III distribution is constructed and some of its statistical properties such as bivariate probability density function and its marginal, joint cumulative distribution and its marginal, reliability and hazard rate functions are studied. The joint probability density function and the joint cumulative distribution are given in closed forms. The joint expectation of this distribution is proposed. The maximum likelihood estimation and prediction for a future observation are derived. Also, Bayesian estimation and prediction are considered under squared error loss function. The performance of the proposed bivariate distribution is examined using a simulation study. Finally, a data set is analyzed under the proposed distribution to illustrate its flexibility for real-life application.


1969 ◽  
Vol 6 (02) ◽  
pp. 442-448
Author(s):  
Lionel Weiss

Suppose Q 1 ⋆, … Q n ⋆ are independent, identically distributed random variables, each with probability density function f(x), cumulative distribution function F(x), where F(1) – F(0) = 1, f(x) is continuous in the open interval (0, 1) and continuous on the right at x = 0 and on the left at x = 1, and there exists a positive C such that f(x) > C for all x in (0, l). f(0) is defined as f(0+), f(1) is defined as f(1–).


2021 ◽  
pp. 35-53
Author(s):  
Johan Fellman

Analyses of income data are often based on assumptions concerning theoretical distributions. In this study, we apply statistical analyses, but ignore specific distribution models. The main income data sets considered in this study are taxable income in Finland (2009) and household income in Australia (1967-1968). Our intention is to compare statistical analyses performed without assumptions of the theoretical models with earlier results based on specific models. We have presented the central objects, probability density function, cumulative distribution function, the Lorenz curve, the derivative of the Lorenz curve, the Gini index and the Pietra index. The trapezium rule, Simpson´s rule, the regression model and the difference quotients yield comparable results for the Finnish data, but for the Australian data the differences are marked. For the Australian data, the discrepancies are caused by limited data. JEL classification numbers: D31, D63, E64. Keywords: Cumulative distribution function, Probability density function, Mean, quantiles, Lorenz curve, Gini coefficient, Pietra index, Robin Hood index, Trapezium rule, Simpson´s rule, Regression models, Difference quotients, Derivative of Lorenz curve


2015 ◽  
Vol 33 (2) ◽  
pp. 18
Author(s):  
Haseeb Athar ◽  
Nayabuddin ◽  
M. Almech Ali

Dual generalized order statistics is a common approach to enable descending ordered random variables like reverse order statistics and lower record values. In this paper probability density function of single concomitant and joint probability density function of two concomitants of dual generalized order statistics from bivariate Burr II distribution are obtained and expressions for moment generating function and cumulant generating function are derived. Also the expressions for mean, variance and covariance are given. Further, results are deduced for the reverse order statistics and lower record values.


1996 ◽  
Vol 8 (5) ◽  
pp. 1107-1122 ◽  
Author(s):  
Dharmendra S. Modha ◽  
Elias Masry

Given N i.i.d. observations {Xi}Ni=1 taking values in a compact subset of Rd, such that p* denotes their common probability density function, we estimate p* from an exponential family of densities based on single hidden layer sigmoidal networks using a certain minimum complexity density estimation scheme. Assuming that p* possesses a certain exponential representation, we establish a rate of convergence, independent of the dimension d, for the expected Hellinger distance between the proposed minimum complexity density estimator and the true underlying density p*.


Sign in / Sign up

Export Citation Format

Share Document