scholarly journals The stress-strain state of the trailer seat-coupling device simulation

Author(s):  
P.I. Shalupina ◽  
◽  
Yu.V. Ragulina ◽  

The article deals with the issues of modeling the stress-strain state of a traction device designed for towing a heavy semi-trailer, on which the equipment of the base station of a mobile transport and reloading rope complex is placed. The main design loads are defined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The method of gluing elements of the grid model is applied. On the basis of the performed calculations, conclusions are drawn about the compliance of the developed structure with the requirements of strength.

Author(s):  
P.I. Shalupina ◽  
◽  
Yu.V. Ragulina ◽  

The article deals with the issues of modeling the stress-strain state of a traction device designed for towing a heavy trailer, on which the equipment of the base station of a mobile transport and reloading rope complex is placed. The main design loads are defined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The method of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. On the basis of the performed calculations, conclusions are drawn about the compliance of the developed structure with the requirements of strength.


Author(s):  
V.I. Tarichko ◽  
◽  
P.I. Shalupina ◽  

The article deals with the issues of modeling the stress-strain state of a chassis designed to accommodate the equipment of a mobile transport and overloading rope complex. The main computational cases are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure and suspension elements. The method of gluing elements of the grid model is applied. On the basis of the performed calculations, conclusions are drawn about the compliance of the developed structure with the requirements of strength and rigidity.


Author(s):  
P.I. Shalupina ◽  
◽  
A.A. Artyomova ◽  

The article deals with the issues of modeling the stress-strain state of the attachment points of the cab of a wheeled chassis of high load capacity. The main design loads are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The technique of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. Based on the calculations performed, conclusions are drawn about the compliance of the developed structure with the strength requirements.


Author(s):  
V.A. Karpychev ◽  
◽  
A.B. Bolotina ◽  
D.V. Kovin ◽  
◽  
...  

The article deals with the issues of modeling the stress-strain state of the attachment points of the cab of a wheeled chassis of high load capacity. The main design loads are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The technique of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. Based on the calculations performed, conclusions are drawn about the compliance of the developed structure with the strength requirements.


Author(s):  
V.I. Tarichko ◽  
◽  
P.I. Shalupina ◽  

The article deals with the issues of modeling the stress-strain state of a semi-trailer designed to accommodate the equipment of a mobile transport and overloading rope complex. The main computational cases are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure and suspension elements. The method of gluing elements of the grid model is applied. On the basis of the performed calculations, conclusions are drawn about the compliance of the developed structure with the requirements of strength and rigidity.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
D. O. BANNIKOV ◽  
V. P. KUPRII ◽  
D. YU. VOTCHENKO

Purpose. Perform numerical analysis of the station structure. Take into account in the process of mathematical modeling the process of construction of station tunnels of a three-vaulted station. Obtain the regularities of the stress-strain state of the linings, which is influenced by the processes of soil excavation and lining construction. Methodology. To achieve this goal, a series of numerical calculations of models of the deep contour interval metro pylon station was performed. Three finite-element models have been developed, which reflect the stages of construction of a three-vaulted pylon station. Numerical analysis was performed on the basis of the finite element method, implemented in the calculation complex Lira for Windows. Modeling of the stress-strain state of the station tunnel linings and the soil massif was performed using rectangular, universal quadrangular and triangular finite elements, which take into account the special properties of the soil massif. Station tunnel linings are modeled by means of rod finite elements. Findings. Isofields of the stress-strain state in finite-element models reflecting the stages of construction are obtained. The vertical displacements and horizontal stresses that are characteristic of a three-vaulted pylon station are analyzed. The analysis of horizontal stresses proved that at the stage of opening of the middle tunnel the scheme of pylon operation is rather disadvantageous. The analysis of bending moments and normal forces was also carried out and the asymmetry of their distribution was noted. Originality. Based on the obtained patterns of distribution of stress-strain state and force factors, it is proved that numerical analysis of the station structure during construction is necessary to take measures to prevent or reduce deformation of frames that are in unfavorable conditions. Practical value. In the course of research, the regularities of changes in stresses, displacements, bending moments and normal forces in the models of the pylon station, which reflect the sequence of its construction, were obtained.


Author(s):  
С.И. Корягин ◽  
О.В. Шарков ◽  
Н.Л. Великанов

Применение полимерных покрытий для ремонта корпусных конструкций выдвигает как актуальную задачу определения прочностных характеристик конструкций с покрытиями. Наличие отверстий, сквозной коррозии, являющихся концентраторами напряжений, делает эти места наиболее опасными, с точки зрения потери прочности, герметичности. Чаще всего разрушение происходит по адгезионному слою. Представлена математическая модель, учитывающая сосредоточенные усилия на концах адгезионного слоя композиционной конструкции типа «металл-покрытие». Проведены расчеты нормальных и касательных напряжений. Наибольшие значения напряжений в полимерном покрытии получены на кромке отверстия в слое металла. В результате анализа установлено, что увеличение перекрытия полимерным покрытием контура отверстия и удаленность от контура отверстия приводят к существенному уменьшению величин напряжений. Разработанная математическая модель и алгоритм вычислений позволяют расчетным путем определить напряженно-деформированное состояние металлической конструкции с отверстием и полимерным покрытием. The use of polymer coatings for the repair of hull structures puts forward as an urgent task to determine the strength characteristics of structures with coatings. The presence of holes, through corrosion, which are stress concentrators, makes these places the most dangerous, in terms of loss of strength, tightness. Most often, the destruction occurs along the adhesive layer. A mathematical model is presented that takes into account the concentrated forces at the ends of the adhesive layer of a composite structure of the "metal-coating" type. Calculations of normal and tangential stresses are performed. The highest stress values in the polymer coating are obtained at the edge of the hole in the metal layer. As a result of the analysis, it was found that an increase in the overlap of the polymer coating of the hole contour and the distance from the hole contour lead to a significant decrease in stress values. The developed mathematical model and calculation algorithm allow calculating the stress-strain state of a metal structure with a hole and a polymer coating.


Author(s):  
V. P. KUPRIY ◽  
O. L. TIUTKIN ◽  
P. YE. ZAKHARCHENKO

Purpose. The article examines the effect on the stress-strain state of the parameters of the finite-element model created in the “Lira” software package in a numerical analysis of non-circular outlined tunnels. Methodology To achieve this goal, the authors developed finite element models of the calotte part of the mine during the construction of a double track railway tunnel using “Lira” software. In each of the models in the “Lira” software package, the interaction zone with temporary fastening was sampled in a specific way. After creation of models, their numerical analysis with the detailed research of his results was conducted. Findings. In the finite element models, the values of deformations and stresses in the horizontal and vertical axes, as well as the maximum values of the moments and longitudinal forces in the temporary fastening were obtained. A comparative analysis of the obtained values of the components of the stress-strain state with a change in the parameters of the finite element model was carried out. The graphs of the laws of these results from the discretization features of the two models were plotted. The third finite element model with a radial meshing in the zone of interaction of temporary support with the surrounding soil massif was investigated. Originality It has been established that in the numerical analysis of the SSS of a tunnel lining of a non-circular outline, its results substantially depend on the shape, size and configuration of the applied finite elements, on the size of the computational area of the soil massif, and also on the conditions for taking into account the actual (elastic or plastic) behavior of the soil massif.  Practical value. The features of discretization and the required dimensions of the computational area of the soil massif were determined when modeling the “lining – soil massif” system, which provide sufficient accuracy for calculating the parameters of the stress-strain state of the lining.


Sign in / Sign up

Export Citation Format

Share Document