scholarly journals C2 Translaminar Screw Fixation (Wright`s Technique) Applicability in Atlantoaxial Instability

2018 ◽  
Vol 23 (2) ◽  
pp. 152-156
Author(s):  
Lucas Alves Aurich ◽  
Jerônimo Buzetti Milano ◽  
Erasmo Barros Da Silva Júnior ◽  
Ricardo Ramina

Atlantoaxial instability often requires surgical treatment. Several techniques are available to perform antlantoaxial stabilization, and all of these have their different advantages and disadvantages. In 2004, Wright described the C2translaminar screw fixation, which offers rigid fixation but without the technical demands of C2 pars placement and eliminates the risk of vertebral artery injury. The aim of this study is to review the C2 translaminar screw fixation technique, emphasizing operative details, risks and benefits comparing with the others atlantoaxial fixation techniques. 

2019 ◽  
Vol 76 (5) ◽  
pp. 555-558 ◽  
Author(s):  
Drazen Ivetic ◽  
Goran Pavlicevic ◽  
Branislav Antic

Introduction. The atlantoaxial complex is a very complicated structure and open reduction of C1-C2 subluxation is very demanding. Atlantoaxial instability may result from the traumatic, inflammatory, neoplastic, congenital or degenerative disorders. Anatomy of the vertebral artery is essential for surgical approach and sometimes the placement of C2 pedicle screw is not possible. In these instances, the translaminar screw placement in C2 can provide an alternative fixation point in C2, without threatening injury to the vertebral artery. Case report. We presented 54- year-old patient with cervical myelopathy according to traumatic atlantoaxial subluxation. Computed tomography angiography showed a bilateral vertebral artery anomaly of ?high-riding? type. The patient was operated and the posterior C1-C2 screws fixation was used. Due to the vertebral artery anomaly C2 screws were translaminary inserted. Complete reduction of C1-C2 subluxation and excellent neurological improvement were achieved. Conclusion. Surgical treatment of C1-C2 subluxation is very challenging. Many techniques of atlantoaxial fixation have been developed. The use of C2 translaminar screw is an alternative method of fixation in the treatment of atlantoaxial instability, especially in cases with the vertebral artery anomaly.


Author(s):  
Torphong Bunmaprasert ◽  
Vorapop Trirattanapikul ◽  
Nantawit Sugandhavesa ◽  
Areerak Phanphaisarn ◽  
Wongthawat Liawrungrueang ◽  
...  

Displaced nonunited type II odontoid fracture can result in atlantoaxial instability, causing delayed cervical myelopathy. Both Magerl’s C1-C2 transarticular screw fixation technique and Harms-Goel C1-C2 screw-rod segmental fixation technique are effective techniques to provide stability. This study aimed to demonstrate the results of two surgical fixation techniques for the treatment of reducible nonunited type II odontoid fracture with atlantoaxial instability. Medical records of patients with reducible nonunited type II odontoid fracture hospitalized for spinal fusion between April 2007 and April 2018 were reviewed. For each patient, specific surgical fixation, either Magerl’s C1-C2 transarticular screw fixation technique augmented with supplemental wiring or Harms-Goel C1-C2 screw-rod fixation technique, was performed according to our management protocol. We reported the fusion rate, fusion period, and complications for each technique. Of 21 patients, 10 patients were treated with Magerl’s C1-C2 transarticular screw fixation technique augmented with supplemental wiring, and 11 were treated with Harms-Goel C1-C2 screw-rod fixation technique. The bony fusion rate was 100% in both groups. The median time to fusion was 69.7 (95%CI 53.1, 86.3) days in Magerl’s C1-C2 transarticular screw fixation technique and 75.2 (95%CI 51.8, 98.6) days in Harms-Goel C1-C2 screw-rod fixation technique. No severe complications were observed in either group. Displaced reducible, nonunited type II odontoid fracture with cervical myelopathy should be treated by surgery. Both fixation techniques promote bony fusion and provide substantial construct stability.


2008 ◽  
Vol 2 (6) ◽  
pp. 386-390 ◽  
Author(s):  
Andrew Jea ◽  
Keyne K. Johnson ◽  
William E. Whitehead ◽  
Thomas G. Luerssen

The use of spinal instrumentation to stabilize the occipitocervical junction in pediatric patients has increased and evolved in recent years. Wiring techniques have now given way to screw-rod or screw-plate techniques with or without postoperative external immobilization. Although C-2 translaminar screws have been used in these constructs, subaxial translaminar screws have not, to date, been described in either the pediatric or adult patient populations. The authors describe the feasibility of translaminar screw placement in the C-3 lamina. Rigid fixation with translaminar screws offers an alternative to subaxial fixation with lateral mass screws, allowing for formation of biomechanically sound spinal constructs and minimizing potential neurovascular morbidity. Their use requires careful analysis of preoperative imaging studies, intact posterior elements, and avoidance of violation of the inner laminar wall.


2002 ◽  
Vol 96 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Morio Matsumoto ◽  
Kazuhiro Chiba ◽  
Takashi Tsuji ◽  
Hirofumi Maruiwa ◽  
Yoshiaki Toyama ◽  
...  

✓ The authors placed titanium mesh cages to achieve posterior atlantoaxial fixation in five patients with atlantoaxial instability caused by rheumatoid arthritis or os odontoideum. A mesh cage packed with autologous cancellous bone was placed between the C-1 posterior arch and the C-2 lamina and was tightly connected with titanium wires. Combined with the use of transarticular screws, this procedure provided very rigid fixation. Solid fusion was achieved in all patients without major complications. The advantages of this method include more stable fixation, better control of the atlantoaxial fixation angle, and reduced donor-site morbidity compared with a conventional atlantoaxial arthrodesis in which an autologous iliac crest graft is used.


2021 ◽  
Vol 2 (20) ◽  
Author(s):  
Sushil Patkar

BACKGROUND Displaced odontoid fractures that are irreducible with traction and have cervicomedullary compression by the displaced distal fracture fragment or deformity caused by facetal malalignment require early realignment and stabilization. Realignment with ultimate solid fracture fusion and atlantoaxial joint fusion, in some situations, are the aims of surgery. Fifteen such patients were treated with direct anterior extrapharyngeal open reduction and realignment of displaced fracture fragments with realignment of the atlantoaxial facets, followed by a variable screw placement (VSP) plate in compression mode across the fracture or anterior atlantoaxial fixation (transarticular screws or atlantoaxial plate screw construct) or both. OBSERVATIONS Anatomical realignment with rigid fixation was achieved in all patients. Fracture fusion without implant failure was observed in 100% of the patients at 6 months, with 1 unrelated mortality. Minimum follow-up has been 6 months in 14 patients and a maximum of 3 years in 4 patients, with 1 unrelated mortality. LESSONS Most irreducible unstable odontoid fractures can be anatomically realigned by anterior extrapharyngeal approach by facet joint manipulation. Plate (VSP) and screws permit rigid fixation in compression mode with 100% fusion. Any associated atlantoaxial instability can be treated from the same exposure.


1995 ◽  
Vol 4 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Bernard Jeanneret ◽  
Frank Kleinstück ◽  
Friedrich Magerl

Sign in / Sign up

Export Citation Format

Share Document