scholarly journals Offline performance studies and first real-timeresults on Core-Collapse Supernova neutrinosearches with the KM3NeT neutrino detectors

2019 ◽  
Author(s):  
Marta Colomer Molla ◽  
Alexis Coleiro ◽  
Damien Dornic ◽  
Vladimir Kulikovskiy ◽  
Massimiliano Lincetto ◽  
...  
2022 ◽  
Vol 2022 (01) ◽  
pp. 003
Author(s):  
Edwin A. Delgado ◽  
Hiroshi Nunokawa ◽  
Alexander A. Quiroga

Abstract The observation of Earth matter effects in the spectrum of neutrinos coming from a next galactic core-collapse supernova (CCSN) could, in principle, reveal if neutrino mass ordering is normal or inverted. One of the possible ways to identify the mass ordering is through the observation of the modulations that appear in the spectrum when neutrinos travel through the Earth before they arrive at the detector. These features in the neutrino spectrum depend on two factors, the average neutrino energies, and the difference between the primary neutrino fluxes of electron and other flavors produced inside the supernova. However, recent studies indicate that the Earth matter effect for CCSN neutrinos is expected to be rather small and difficult to be observed by currently operating or planned neutrino detectors mainly because of the similarity of average energies and fluxes between electron and other flavors of neutrinos, unless the distance to CCSN is significantly smaller than the typically expected one, ∼ 10 kpc. Here, we are looking towards the possibility if the non-standard neutrino properties such as decay of neutrinos can enhance the Earth matter effect. In this work we show that invisible neutrino decay can potentially enhance significantly the Earth matter effect for both νe and ν̅e channels at the same time for both mass orderings, even if the neutrino spectra between electron and other flavors of neutrinos are very similar, which is a different feature not expected for CCSN neutrinos with standard oscillation without the decay effect.


2020 ◽  
Vol 1468 ◽  
pp. 012154
Author(s):  
Odysse Halim ◽  
C Vigorito ◽  
C Casentini ◽  
G Pagliaroli ◽  
M Drago ◽  
...  

2019 ◽  
Vol 69 (1) ◽  
pp. 253-278 ◽  
Author(s):  
B. Müller

With myriads of detection events from a prospective Galactic core-collapse supernova, current and future neutrino detectors will be able to sample detailed, time-dependent neutrino fluxes and spectra. This will offer significant possibilities of inferring supernova physics from the various phases of the neutrino signal, ranging from the neutronization burst through the accretion and early explosion phases to the cooling phase. The signal will constrain the time evolution of bulk parameters of the young proto–neutron star, such as its mass and radius, as well as the structure of the progenitor; probe multidimensional phenomena in the supernova core; and constrain the dynamics of the early explosion phase. Aside from further astrophysical implications, supernova neutrinos may also shed light on the properties of matter at supranuclear densities and on open problems in particle physics.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
A. Coleiro ◽  
M. Colomer Molla ◽  
D. Dornic ◽  
M. Lincetto ◽  
V. Kulikovskiy

AbstractThe multi-messenger observation of the next galactic core-collapse supernova will shed light on the different physical processes involved in these energetic explosions. Good timing and pointing capabilities of neutrino detectors would help in the search for an electromagnetic or gravitational-wave counterparts. An approach for the determination of the arrival time delay of the neutrino signal at different experiments using a direct detected neutrino light-curve matching is discussed. A simplified supernova model and detector simulation are used for its application. The arrival time delay and its uncertainty between two neutrino detectors are estimated with chi-square and cross-correlation methods. The direct comparison of the detected light-curves offers the advantage to be model-independent. Millisecond time resolution on the arrival time delay at two different detectors is needed. Using the computed time delay between different combinations of currently operational and future detectors, a triangulation method is used to infer the supernova localisation in the sky. The combination of IceCube, Hyper-Kamiokande, JUNO and KM3NeT/ARCA provides a 90% confidence area of $$140\pm 20\,\hbox {deg}^2$$ 140 ± 20 deg 2 . These low-latency analysis methods can be implemented in the SNEWS alert system.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
M. López ◽  
I. Di Palma ◽  
M. Drago ◽  
P. Cerdá-Durán ◽  
F. Ricci

2012 ◽  
Author(s):  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Sergei I. Blinnikov

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


Sign in / Sign up

Export Citation Format

Share Document